Hanoi Factorys

题面

思路

这道题看似难的一匹,实际上也难的一批还好,甚至n^2 DP都有50分呢.

原谅我一失手成千古恨。

50分思路

就是sort后根据条件DP

if (LIS[i].b>LIS[j].a) f[i]=max(f[j]+LIS[i].h,f[i]);

然后更新MAXX的值输出即可

100分思路

首先,为什么我单调队列只有90啊啊啊啊啊!!!(其实是因为有一个贪心所以导致单调队列太长了)

用优先队列优化,既然当前位置的值是由前i个位置推来的,那么要让结果最大也就是要取前i个节点的最大值了(其实单调性,优先队列以及线段树或树状数组都可以啊)

于是乎,标程也得以推出。

代码

#include<bits/stdc++.h>
using namespace std;
long long n,f[100005],MAXX=-1;
struct hanoi{long long x,y,h;}LIS[100005];
bool cmp(hanoi x,hanoi y){if (x.y==y.y) return x.x>y.x;return x.y>y.y;}
struct node{long long n,num;bool operator <(const node &now)const{return num<now.num;}};
priority_queue<node> q;
int main()
{
 	freopen("hanoi.in","r",stdin);
 	freopen("hanoi.out","w",stdout);
    cin>>n;
    for (int i=1;i<=n;i++) cin>>LIS[i].x>>LIS[i].y>>LIS[i].h;
    sort(LIS+1,LIS+n+1,cmp);
    q.push((node){0,0});
    for (int i=1;i<=n;i++)
    {
        while (q.top().n>=LIS[i].y) q.pop();
        f[i]=q.top().num+LIS[i].h;
        q.push((node){LIS[i].x,f[i]});
        MAXX=max(MAXX,f[i]);
    }
    cout<<MAXX<<endl;
    return 0;
}

转载于:https://www.cnblogs.com/GREED-VI/p/9870368.html

### 蓝桥杯 Hanoi塔递归实现解题思路 #### 1. 汉诺塔问题概述 汉诺塔问题是经典的递归问题之一,其核心在于通过分解子问题来逐步完成目标。具体来说,对于 \( N \) 层的汉诺塔问题,可以将其分为三个主要部分:将前 \( N-1 \) 层从 A 杆移动到 B 杆作为辅助杆,再将第 \( N \) 层直接从 A 移动到 C 杆,最后将之前放在 B 杆上的 \( N-1 \) 层移动到 C 杆[^4]。 #### 2. 递归的核心逻辑 递归的关键在于找到终止条件以及如何划分子问题。在汉诺塔问题中: - **终止条件**:当仅有一个盘子 (\( N=1 \)) 时,可以直接将其从源柱 (A) 移动到目标柱 (C)[^3]。 - **递归调用**:假设已经解决了 \( N-1 \) 的情况,则可以通过以下步骤解决 \( N \) 的情况: 1. 将 \( N-1 \) 个盘子从源柱 (A) 移动到辅助柱 (B),利用目标柱 (C) 作为中间过渡; 2. 将剩下的一个盘子从源柱 (A) 直接移动到目标柱 (C); 3. 再次将 \( N-1 \) 个盘子从辅助柱 (B) 移动到目标柱 (C),此时无需借助任何其他柱子。 #### 3. 实现代码示例 以下是基于 Python 编写的汉诺塔递归解决方案: ```python def hanoi(n, source='A', auxiliary='B', target='C'): if n == 1: print(f"Move disk {n} from {source} to {target}") return # Step 1: Move the top n-1 disks from source to auxiliary using target as a helper hanoi(n - 1, source, target, auxiliary) # Step 2: Move the nth disk directly from source to target print(f"Move disk {n} from {source} to {target}") # Step 3: Move the remaining n-1 disks from auxiliary to target using source as a helper hanoi(n - 1, auxiliary, source, target) # Example usage with 3 disks hanoi(3) ``` 这段代码展示了完整的递归过程,并打印每一步的操作细节。其中 `print` 函数用于记录具体的移动操作。 #### 4. 性能分析与注意事项 尽管递归方法具有直观性和简洁性的优点,但在实际应用中需要注意性能开销。由于每次递归都会增加一层栈帧,因此随着 \( N \) 增大,内存消耗会显著上升。例如,在某些嵌入式系统或受限环境中可能不适用此方法。然而,在大多数情况下(如蓝桥杯竞赛中的标准环境),这种递归方式完全可行[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值