迭代器、 生成器、 面向过程编程

1  迭代器

2  生成器

3  面向过程编程


 6.10 迭代器

1、什么是迭代:指的是一个重复的过程,每一次重复称为一次迭代,并且每一次重复的结果是下一次重复的初始值

l=['a','b','c']
count=0
while count < len(l):   #只是单纯地重复,因而不是迭代
    print(l[count])
    count+=1

2 为什么要有迭代器?

对于序列类型:str,list,tuple,可以依赖索引来迭代取值,

但是对于dict,set,文件,python必须为我们提供一种不依赖于索引的迭代取值的方式--》迭代器

3、 可迭代的对象(下列都是):obj.__iter__

name='egon'
l=[1,2,3]
t=(1,2,3)
d={'name':'egon','age':18,'sex':'male'}
s={'a','b','c'}
f=open('a.txt','w',encoding='utf-8')

name.__iter__
l.__iter__
t.__iter__
d.__iter__
s.__iter__
f.__iter__

4、 迭代器对象(文件是):obj.__iter__,obj.__next__

f=open('a.txt','w',encoding='utf-8')
f.__iter__
f.__next__

5、总结

1 可迭代对象不一定是迭代器对象

2 迭代器对象一定是可迭代的对象

3 调用obj.__iter__()方法,得到的是迭代器对象,对于迭代器对象,执行__iter__得到的仍然是它本身)

d={'name':'egon','age':18,'sex':'male'}
d_iter=d.__iter__() #得到迭代器对象

f=open('a.txt','w',encoding='utf-8')
f_iter=f.__iter__().__iter__().__iter__().__iter__() #迭代器对象得到的仍然是它本身
print(f_iter is f) #True


#字典
d={'name':'egon','age':18,'sex':'male'} #可迭代对象
d_iter=d.__iter__() #迭代器对象
print(d_iter.__next__())
print(d_iter.__next__())
print(d_iter.__next__())
print(d_iter.__next__()) #迭代器d_iter没有值了,就会抛出异常StopIteration
 
#文件
f=open('a.txt','r',encoding='utf-8')
print(f.__next__())
print(f.__next__())
print(f.__next__())
print(f.__next__())
f.close()

#列表
l=['a','b','c']
l_iter=l.__iter__()
print(l_iter.__next__())
print(l_iter.__next__())
print(l_iter.__next__())
print(l_iter.__next__())

#处理异常(可用for循环,for循环自带处理异常)
d={'name':'egon','age':18,'sex':'male'}
d_iter=iter(d) #d_iter=d.__iter__()
while True:
    try:
        print(next(d_iter)) #print(d_iter.__next__())
    except StopIteration:  #捕获异常
        break

print('=>>>')

6、for循环详解:

   1、调用in后的obj_iter=obj.__iter__(),得到一个迭代器对象iter_dic

   2、k=obj_iter.__next__()

   3、重复过程2,直到捕捉到异常StopIteration,结束循环

d={'name':'egon','age':18,'sex':'male'}
for k in d:
    print(k)

7、总结迭代器的优缺点:

优点:

1、提供一种统一的、不依赖于索引的取值方式,为for循环的实现提供了依据

2、迭代器同一时间在内存中只有一个值——》更节省内存,

缺点:

1、只能往后取,并且是一次性的

2、不能统计值的个数,即长度

6.11 生成器

6.11.1 生成器

1、什么是生成器:只要在函数体内出现yield关键字,那么再执行函数就不会执行函数代码,会得到一个结果,该结果就是生成器

def func():
    print('=====>1')
    yield 1
    print('=====>2')
    yield 2
    print('=====>3')
    yield 3

2、生成器就是迭代器

g=func()  #g是生成器
res1=next(g)
print(res1)

res2=next(g)
print(res2)

res3=next(g)
print(res3)

3、yield的功能:

1、yield为我们提供了一种自定义迭代器对象的方法

2、yield与return的区别

1)yield可以返回多次值

2)函数暂停与再继续的状态是由yield帮我们保存的

#自己编写rang()函数
def my_range(start,stop,step=1):
    while start < stop:
        yield start  #start=1
        start+=step  #start=3

g=my_range(1,5,2)
print(g)
#print(next(g))
#print(next(g))
for i in my_range(1,5,2):
    print(i)

4、小练习::tail -f access.log | grep '404'

import time
def tail(filepath):
    with open(filepath,'rb') as f:
        f.seek(0,2)
        while True:
            line=f.readline()
            if line:
                yield line
            else:
                time.sleep(0.05)

def grep(lines,pattern):
   for line in lines:
       line=line.decode('utf-8')
       if pattern in line:
           yield line

lines=grep(tail('access.log'),'404')
for line in lines:
    print(line)

6.11.2 yield表达式形式的用法

def eater(name):
    print('%s ready to eat' %name)
    food_list=[]
    while True:
        food=yield food_list  #food=yield='一盆骨头'
        food_list.append(food)
        print('%s start to eat %s' %(name,food))

e=eater('alex')
#首先初始化:
print(e.send(None)) # next(e)
#然后e.send:1 从暂停的位置将值传给yield  2、与next一样
print(e.send('一桶泔水'))
print(e.send('一盆骨头'))

6.12 面向过程编程

1、首先强调:面向过程编程绝对不是用函数编程这么简单,面向过程是一种编程思路、思想,而编程思路是不依赖于具体的语言或语法的。言外之意是即使我们不依赖于函数,也可以基于面向过程的思想编写程序

2、定义

面向过程的核心是过程二字,过程指的是解决问题的步骤,即先干什么再干什么

基于面向过程设计程序就好比在设计一条流水线,是一种机械式的思维方式

3、优点:复杂的问题流程化,进而简单化

4、缺点:可扩展性差,修改流水线的任意一个阶段,都会牵一发而动全身

5、应用:扩展性要求不高的场景,典型案例如linux内核,git,httpd

6、举例

流水线1:

用户输入用户名、密码--->用户验证--->欢迎界面

流水线2:

用户输入sql--->sql解析--->执行功能

 

grep -rl 'python' /etc

# 第一步:拿到一个文件夹下所有的文件的绝对路径
import os
def init(func):
    def inner(*args,**kwargs):
        g=func(*args,**kwargs)
        next(g)
        return g
    return inner

@init
def search(target):  # r'D:\video\python20期\day4\a'
    while True:
        filepath = yield
        g = os.walk(filepath)
        for pardir, _, files in g:
            for file in files:
                abs_path = r'%s\%s' % (pardir, file)
                #把abs_path传给下一个阶段
                target.send(abs_path)

# 第二步:打开文件拿到文件对象f
@init
def opener(target):
    while True:
        abs_path = yield
        with open(abs_path,'rb') as f:
            #把(abs_path,f)传给下一个阶段
            target.send((abs_path,f))

#第三步:读取f的每一行内容
@init
def cat(target):
    while True:
        abs_path,f=yield
        for line in f:
            #把(abs_path,line)传给下一个阶段
            res=target.send((abs_path,line))
            #满足某种条件,break掉for循环
            if res:
                break

#第四步:判断'python' in line
@init
def grep(target,pattern):
    pattern = pattern.encode('utf-8')
    res=False
    while True:
        abs_path,line=yield res
        res=False
        if pattern in line:
            #把abs_path传给下一个阶段
            res=True
            target.send(abs_path)

#第五步:打印文件路径
@init
def printer():
    while True:
        abs_path=yield
        print('<%s>' %abs_path)

g=search(opener(cat(grep(printer(),'python')))) #'python' in b'xxxxx'
g.send(r'D:\video\python20期\day4\a')

 

面向过程编程:核心是过程二字,过程指的就是解决问题的步骤,即先干什么后干什么。。。。

基于该思路编写程序就好比设计一条流水线,是一种机械式的思维方式

优点:复杂的问题流程化、进而简单化

缺点:可扩展性差

转载于:https://www.cnblogs.com/snailgirl/p/8125032.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值