[BZOJ1858] [Scoi2010]序列操作

Description

lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b 把[a, b]区间内的所有数全变成1 2 a b 把[a,b]区间内的所有数全部取反,也就是说把所有的0变成1,把所有的1变成0 3 a b 询问[a, b]区间内总共有多少个1 4 a b 询问[a, b]区间内最多有多少个连续的1 对于每一种询问操作,lxhgww都需要给出回答,聪明的程序员们,你们能帮助他吗?

Input

输入数据第一行包括2个数,n和m,分别表示序列的长度和操作数目 第二行包括n个数,表示序列的初始状态 接下来m行,每行3个数,op, a, b,(0 < = op < = 4,0 < = a < = b)

Output

对于每一个询问操作,输出一行,包括1个数,表示其对应的答案

Sample Input

10 10
0 0 0 1 1 0 1 0 1 1
1 0 2
3 0 5
2 2 2
4 0 4
0 3 6
2 3 7
4 2 8
1 0 5
0 5 6
3 3 9

Sample Output

5
2
6
5

HINT

对于30%的数据,1<=n, m<=1000 对于100%的数据,1< = n, m < = 100000

Source

 

 
wa。。。这个神题调试了我一晚上。
维护区间...貌似都有区间可加性..线段树!
维护区间$1$的个数,从左端点开始的最长的1/0的个数,从右端点开始最长的1/0的个数。
区间中最长一段的1/0.
然后这题坑的就是标记的下传。
我们发现区间修改可以覆盖区间翻转,就是我们在$change$和$pushdown$的时候,如果这个节点被新修改,就抹去它的翻转标记。
然后$opt=4$的查询不好处理,我们要传下去一个结构体,里面存和线段树节点一样的东西,然后边递归边修改。
 

 
 
#include <iostream>
#include <cstdio>
using namespace std;
#define reg register
inline char gc() {
    static const int BS = 1 << 22;
    static unsigned char buf[BS], *st, *ed;
    if (st == ed) ed = buf + fread(st = buf, BS, 1, stdin);
    return st == ed ? EOF : *st++;
}
#define gc getchar
inline int read() {
    int res=0;char ch=gc();bool fu=0;
    while(!isdigit(ch))fu|=(ch=='-'),ch=gc();
    while(isdigit(ch))res=(res<<3)+(res<<1)+(ch^48),ch=gc();
    return fu?-res:res;
}
#define N 100005
int n, m;
#define ls o << 1
#define rs o << 1 | 1
int a[N];
int tr[N<<2], L1[N<<2], R1[N<<2], L0[N<<2], R0[N<<2], mx1[N<<2], mx0[N<<2];
int rev[N<<2], lzy[N<<2];

inline void pushup(int o, int l, int r)
{
    int mid = l + r >> 1;
    tr[o] = tr[ls] + tr[rs];
    L1[o] = L1[ls] + (L1[ls] == mid - l + 1 ? L1[rs] : 0);
    L0[o] = L0[ls] + (L0[ls] == mid - l + 1 ? L0[rs] : 0);
    R1[o] = R1[rs] + (R1[rs] == r - mid ? R1[ls] : 0);
    R0[o] = R0[rs] + (R0[rs] == r - mid ? R0[ls] : 0);
    mx1[o] = max(mx1[ls], max(mx1[rs], R1[ls] + L1[rs]));
    mx0[o] = max(mx0[ls], max(mx0[rs], R0[ls] + L0[rs]));
}

//lzy : 0 means none , 1 means turn to 1, 2 means turn to 0
//rev : 1 means reverse, 0 means none
//lzy first ans rev second
void pushdown(int o, int l, int r)
{
    int mid = l + r >> 1;
    if (lzy[o] == 1) {
        tr[ls] = mid - l + 1, tr[rs] = r - mid;
        L1[ls] = R1[ls] = mx1[ls] = mid - l + 1;
        L1[rs] = R1[rs] = mx1[rs] = r - mid;
        L0[ls] = R0[ls] = mx0[ls] = 0;
        L0[rs] = R0[rs] = mx0[rs] = 0;
        lzy[o] = 0;
        lzy[ls] = lzy[rs] = 1;
        rev[ls] = rev[rs] = 0;
    } else if (lzy[o] == 2) {
        tr[ls] = tr[rs] = 0;
        L1[ls] = R1[ls] = mx1[ls] = 0;
        L1[rs] = R1[rs] = mx1[rs] = 0;
        L0[ls] = R0[ls] = mx0[ls] = mid - l + 1;
        L0[rs] = R0[rs] = mx0[rs] = r - mid;
        lzy[o] = 0;
        lzy[ls] = lzy[rs] = 2;
        rev[ls] = rev[rs] = 0;
    }
    if (rev[o]) 
    {
        tr[ls] = mid - l + 1 - tr[ls];
        tr[rs] = r - mid - tr[rs];
        swap(L1[ls], L0[ls]);
        swap(L1[rs], L0[rs]);
        swap(R1[ls], R0[ls]);
        swap(R1[rs], R0[rs]);
        swap(mx1[ls], mx0[ls]);
        swap(mx1[rs], mx0[rs]);
        rev[o] = 0;
        rev[ls] ^= 1, rev[rs] ^= 1;
    }
}

void Build(int l, int r, int o)
{
    if (l == r)
    {
        if (a[l] == 1) L1[o] = R1[o] = mx1[o] = tr[o] = 1;
        else L0[o] = R0[o] = mx0[o] = 1;
        return ;
    }
    int mid = l + r >> 1;
    Build(l, mid, ls);
    Build(mid + 1, r, rs);
    pushup(o, l, r);
}

void change(int l, int r, int o, int ql, int qr, int opt)
{
    if (l >= ql and r <= qr) 
    {
        if (opt == 0) 
        {
            tr[o] = 0;
            L1[o] = R1[o] = mx1[o] = 0;
            L0[o] = R0[o] = mx0[o] = r - l + 1;
            lzy[o] = 2, rev[o] = 0;
        }
        if (opt == 1) 
        {
            tr[o] = r - l + 1;
            L0[o] = R0[o] = mx0[o] = 0;
            L1[o] = R1[o] = mx1[o] = r - l + 1;
            lzy[o] = 1, rev[o] = 0;
        }
        if (opt == 2)
        {
            tr[o] = r - l + 1 - tr[o];
            swap(L1[o], L0[o]);
            swap(R1[o], R0[o]);
            swap(mx1[o], mx0[o]);
            rev[o] ^= 1;
        }
        return ;
    }
    pushdown(o, l, r);
    int mid = l + r >> 1;
    if (ql <= mid) change(l, mid, ls, ql, qr, opt);
    if (qr > mid) change(mid + 1, r, rs, ql, qr, opt);
    pushup(o, l, r);
}

int query1(int l, int r, int o, int ql, int qr)
{
    if (l >= ql and r <= qr) return tr[o];
    int res = 0, mid = l + r >> 1;
    pushdown(o, l, r);
    if (ql <= mid) res += query1(l, mid, ls, ql, qr);
    if (qr > mid) res += query1(mid + 1, r, rs, ql, qr);
    return res;
}

struct node {
    int tr, l1, r1, mx;
};

node query2(int l, int r, int o, int ql, int qr)
{
//    printf("%d %d %d %d %d\n", l, r ,o, ql, qr);
    if (l >= ql and r <= qr) return (node){tr[o], L1[o], R1[o], mx1[o]};
    pushdown(o, l, r);
    int mid = l + r >> 1;
    if (qr <= mid) return query2(l, mid, ls, ql, qr);
    if (ql > mid) return query2(mid + 1, r, rs, ql, qr);
    node r1, r2, res;
    r1 = query2(l, mid, ls, ql, qr), r2 = query2(mid + 1, r, rs, ql, qr);
    res.tr = r1.tr + r2.tr; 
    res.mx = max(r1.mx, max(r2.mx, r1.r1 + r2.l1));
    res.l1 = r1.l1 + (r1.l1 == mid - l + 1 ? r2.l1 : 0);
    res.r1 = r2.r1 + (r2.r1 == r - mid ? r1.r1 : 0);
    return res;
}

int main()
{
    n = read(), m = read();
    for (reg int i = 1 ; i <= n ; i ++) a[i] = read();
    Build(1, n, 1);
    while(m--)
    {
        int opt = read(), x = read() + 1, y = read() + 1;
        if (opt == 0) change(1, n, 1, x, y, 0);
        if (opt == 1) change(1, n, 1, x, y, 1);
        if (opt == 2) change(1, n, 1, x, y, 2);
        if (opt == 3) printf("%d\n", query2(1, n, 1, x, y).tr);
        if (opt == 4) printf("%d\n", query2(1, n, 1, x, y).mx);
//        printf("sum = %d\n", tr[1]);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/BriMon/p/9715772.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值