2019人工智能实战 第六次作业 段峙宇

项目内容
课程内容2019人工智能实战
作业要求第六次作业
课程目标将模型准确度调整至>97% 并给出最终loss曲线
本次作业的帮助了解各项参数对训练准确性的影响程度

1.调节epoch

Nolearning_ratehidden1hidden2epochbatch_sizecorrect_rate
10.232162100.9567
20.232165100.9652
30.2321610100.9647
40.2321620100.9648

2.调节神经网络结构

Nolearning_ratehidden1hidden2epochbatch_sizecorrect_rate
10.1643210100.9748
20.11286410100.9784

3.调节batch size

No.learning ratehidden1hidden2epochbatch sizecorrect rate
10.112864550.9762
20.1128645100.9732
30.1128645200.9639
40.1128645400.9568

4.调节学习率

No.learning ratehidden1hidden2epochbatch sizecorrect rate
10.132165100.9647
20.232165100.9632
30.432165100.9499
40.832165100.9464

5.结论
综上所述参数设置为

learning_rate =0.1
n_hidden1 =128
n_hidden2 =64
m_epoch =10
batch_size =10

时出现最高正确率0.9784
6.LOSS曲线
1615102-20190429214150751-336586536.jpg

转载于:https://www.cnblogs.com/dzysblog/p/10792665.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值