欧拉公式

欧拉公式是用来求n个数中与n互质的数的个数

方法1 直接法套公式 A(n)=n(1-1/v[0])(1-1/v[1])···(1-1/v[v.size()-1])

先分解n然后边分解边乘

ll oula(ll n)
{
    int ans=n;
    for(int i=2; i*i<=n; i++)
        if(n%i==0)//第一次找到的必为素因子
        {
            ans=ans-ans/i;
            while(n%i==0)  n/=i;
        }
    if(n>1)
        rea=rea-rea/n;
    return rea;
}

方法二 用筛法


#define Max 1000001
int euler[Max];
     euler[1]=1;
     for(int i=2;i<Max;i++)
       euler[i]=i;
     for(int i=2;i<Max;i++)
        if(euler[i]==i)
           for(int j=i;j<Max;j+=i)
              euler[j]=euler[j]/i*(i-1);//先进行除法是为了防止中间数据的溢出
}

转载于:https://www.cnblogs.com/wzl19981116/p/9355718.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值