#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define MID(x,y) ((x+y)>>1)
const double f=(sqrt(5.0)+1.0)/2.0;
using namespace std;
typedef long long LL;
int fab[21];
int main(){
int n;
fab[1] = 1;
for (int i = 2; i <= 20; i ++)
fab[i] = fab[i-1] + fab[i-2];
while(cin >> n){
if (n <= 20){
cout << fab[n] << endl;
continue;
}
double log10_fabn = -0.5*log(5.0)/log(10.0)+((double)n)*log(f)/log(10.0);//忽略最后一项无穷小
log10_fabn = log10_fabn - (int)log10_fabn;
double num = pow(10, log10_fabn);
while(num < 1000)
num *= 10;
cout << (int)num <
题目大意:问fibonacci数列的第n项的前四个数. 很好的一道题~~~如果取后几位的话,取模就可以了,但取前几位显然没这么简单= =…… 但假如我们能
把它表示成小数(科学计数法)的话,那么要取几位我们乘对应的几个10就可以了(
前提是取的位数在计算机表示小数的精确范围之内)~~~ 取对数log10可以非常美的完成它: 假设给出一个数10234432,那么log10(10234432)=log10(1.0234432*10^7)=log10(1.0234432)+7; log10(1.0234432)就是log10(10234432)的小数部分. log10(1.0234432)=0.010063744 10^0.010063744=1.023443198 那么要取几位就很明显了吧~
先取对数(对10取),然后得到结果的小数部分bit,pow(10.0,bit)以后如果答案还是<1000那么就一直乘10。
转载于:https://www.cnblogs.com/AbandonZHANG/archive/2013/02/01/4113995.html