Keras实现简单的手写数字识别的学习

使用keras的序贯模型实现单层神经网络对手写数字识别的识别,相当于是一个keras的helloworld级别的程序,就当作深度学习之路的开始。

首先导入需要的函数和包

from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.datasets import mnist
import numpy as np

 

Sequential()是最简单的模型——序贯模型。通过keras.models导入。

构建模型的网络结构:

model = Sequential()
model.add(Dense(500,input_shape=(784,))) #输入层, 28*28=784
model.add(Activation('tanh'))
model.add(Dropout(0.5)) #50% dropout

model.add(Dense(500)) #隐藏层, 500
model.add(Activation('tanh'))
model.add(Dropout(0.5)) #50% dropout

model.add(Dense(10)) #输出结果, 10
model.add(Activation('softmax'))

通过model.add()增加模型的层数。其中Dense()设定该层的结构,第一个参数表示输出的个数,第二个参数是接受的输入数据的格式。第一层中需要指定输入的格式,在之后的增加的层中输入层节点数默认是上一层的输出个数。Actication()指定激活函数,Dropout()指定每层要丢掉的节点信息百分比。输出层激活函数一般为softmax,不需要丢弃节点。

编译模型:

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) #设定学习效率等参数
model.compile(loss = 'categorical_crossentropy', optimizer=sgd, class_mode='categorical') #使用交叉熵作为loss

使用优化器sgd来编译模型,用来指定学习效率等参数。编译时指定loss函数,这里使用交叉熵函数作为loss函数。

 

读取数据集作为训练集和测试集:

(x_train,y_train),(x_test,y_test) = mnist.load_data() #使用mnist读取数据(第一次需要下载)

X_train = x_train.reshape(x_train.shape[0], x_train.shape[1]*x_train.shape[2])
X_test = x_test.reshape(x_test.shape[0],x_test.shape[1]*x_test.shape[2])

Y_train = (np.arange(10) == y_train[:,None]).astype(int) #将index转换橙一个one_hot矩阵
Y_test = (np.arange(10) == y_test[:,None]).astype(int)

读取minst数据集,通过reshape()函数转换数据的格式。

如果我们打印x_train.shape会发现它是(60000,28,28),即一共60000个数据,每个数据是28*28的图片。通过reshape转换为(60000,784)的线性张量。

如果我们打印y_train会发现它是一组表示每张图片的表示数字的数组,通过numpy的arange()和astype()函数将每个数字转换为一组长度为10的张量,代表的数字的位置是1,其它位置为0.

 

对使用转换后的数据对模型进行训练:

model.fit(X_train,Y_train,batch_size=200,epochs=100,shuffle=True,verbose=1,validation_split=0.3)

其中,batch_size表示每个训练块包含的数据个数,epochs表示训练的次数,shuffle表示是否每次训练后将batch打乱重排,verbose表示是否输出进度log,validation_split指定验证集占比

 

输出对测试集进行测试的结果:

print("test set")
scores = model.evaluate(X_test,Y_test,batch_size=200,verbose=1)
print("")
print("The test loss is %f" % scores)
result = model.predict(X_test,batch_size=200,verbose=1)

result_max = np.argmax(result, axis = 1)
test_max = np.argmax(Y_test, axis = 1)

result_bool = np.equal(result_max, test_max)
true_num = np.sum(result_bool)
print("")
print("The accuracy of the model is %f" % (true_num/len(result_bool)))

model.evaluate()计算了测试集中的识别的loss值。

通过model.predict(),我们可以得到对于测试集中每个数字的识别结果,每个数字对应一个表示每个数字都是多少概率的长度为10的张量。

通过np.argmax(),我们得到每个数字的识别结果和期望的识别结果

通过np.equal(),我们得到每个数字是否识别正确

通过np.sum()得到识别正确的总的数字个数

计算正确率并打印。

这是最后的结果qAq:

 

 

转载于:https://www.cnblogs.com/yqtm/p/6924939.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Keras是一种用户友好的深度学习库,能够简化卷积神经网络(CNN)的实现过程。通过使用Keras库,我们可以非常轻松地实现手写数字识别的模型,并达到99.6%的准确率。 首先,我们需要准备一个适用于手写数字识别的数据集,如MNIST数据集。MNIST数据集包含了大量的手写数字图像,每个图像都有对应的标签(数字)。我们可以使用Keras内置的函数来加载和预处理这个数据集,使其适用于训练模型。 接下来,我们可以定义一个CNN模型。在Keras中,我们可以使用Sequential模型来构建我们的网络。通过添加不同的层,我们可以定义卷积层、池化层和全连接层。这些层可以通过简单的方法来添加到我们的模型中。 然后,我们可以使用compile()方法来编译我们的模型。我们需要指定损失函数、优化器和评估指标。在这种情况下,我们可以选择交叉熵作为损失函数,Adam优化器作为优化器,并选择准确率作为评估指标。 接下来,我们需要使用fit()方法来训练我们的模型。我们可以指定训练数据集、训练的轮数和每批次的大小。Keras会自动计算并更新权重和偏差来最小化损失函数。 最后,我们可以使用evaluate()方法来评估我们的模型在测试数据集上的表现。这将给出模型的准确率,即它正确分类的图像所占的比例。 通过以上步骤,我们可以使用Keras实现一个CNN模型来进行手写数字识别,且其准确率可以达到99.6%。这是一个非常令人满意的结果,表明我们的模型在识别手写数字方面具有很高的准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值