从小学或是初中就接触到π,却一直不知道它的定义和求值方法,在这里明确一下。
一.圆周率的定义
圆周率 = 周长 / 直径
π = C / d
二.弧度制的定义
弧度 = 弧长 / 半径
α = l / r
下面来推导角度制与弧度制的关系:
我们定义圆周角为360°
当我们取圆心角等于360°时,弧长等于周长,有:
α = C / r = πd / r = 2π
由此得出,角度制的360度对应弧度制的2π (rad)
三.莱布尼茨级数
π/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9-……
随着等式右侧项数的增加,结果不断趋近于π/4,证明如下:
考虑级数
1 - x2 + x4 - x6 + x8 -…… = 1 / (1+x2)
等式两边同时积分,得
x - x3/3 + x5/5 -x7/7 + x9/9 +…… = tan-1 x
取x等于1,有tan-1 1等于π/4,故有
1 - 1/3 + 1/5 - 1/7 + 1/9-…… = π/4
原式得证。
附:对于圆周率的证明,还有很多方法,比如wallis乘积法等,此处只列举一个我觉得最简单的证明方法。
(最后说一句:我的数学水平实在是差,很多定理都是硬背下来的,怪不得很多东西无法深入理解,一旦深入思考就发现自己思维非常混乱,以后推导显而易见的结论是免不了啦……)