机器学习中的数学基础


高等数学

夹逼定理

如果三个函数满足f(x)<=g(x)<=h(x),而且他们都在xo处有极限,那么

\(\lim _ { x \rightarrow x _ { 0 } } f ( x ) < = \lim _ { x \rightarrow x _ { 0 } } g ( x ) < = \lim _ { x \rightarrow x _ { 0 } } h ( x )\)

重要极限

\(\lim _ { x \rightarrow 0 } \sin ( x ) / x = 1\)

\(\lim _ { x \rightarrow \infty } x ^ { \alpha } / e ^ { x } = 0\) 对于任意的正数α

\(\lim _ { x \rightarrow \infty } \ln ( x ) / x ^ { \alpha } = 0\) 对于任意的正数α

\(\lim _ { x \rightarrow \infty } ( 1 + 1 / x ) ^ { x } = e\)

初等函数的导数

\(\begin{array} { l l } { \frac { d } { d x } \sin ( x ) = \cos ( x ) } & { \frac { d } { d x } \cos ( x ) = - \sin ( x ) } \\ { \frac { d } { d x } \sinh ( x ) = \cosh ( x ) } & { \frac { d } { d x } \cosh ( x ) = \sinh ( x ) } \\ { \frac { d } { d x } x ^ { n } = n x ^ { n - 1 } } & { \frac { d ^ { n } } { d x ^ { n } } x ^ { n } = n ! } \\ { \frac { d } { d x } e ^ { x } = e ^ { x } } & { \frac { d } { d x } \ln ( x ) = 1 / x } \end{array}\)

求导法则

链式法则: \(\frac { d } { d x } ( g \circ f ) = \frac { d g } { d x } ( f ) \cdot \frac { d f } { d x }\)

加法法则:\(\frac { d } { d x } ( g + f ) = \frac { d g } { d x } + \frac { d f } { d x }\)

乘法法则:\(\frac { d } { d x } ( g \cdot f ) = \frac { d g } { d x } \cdot f + g \cdot \frac { d f } { d x }\)

出发法则:\(: \frac { d } { d x } \left( \frac { g } { f } \right) = \frac { \frac { d g } { d x } \cdot f - \frac { d f } { d x } \cdot g } { f ^ { 2 } }\)

反函数求导:\(\frac { d } { d x } \left( f ^ { - 1 } \right) = \frac { 1 } { \frac { d f } { d x } \left( f ^ { - 1 } \right) }\)

微分学的核心思想是逼近

一阶导数:线性逼近

二阶导数:二次逼近

导数计算:求导法则

一元微分学的顶峰:泰勒级数

\(e ^ { x } = 1 + x + x ^ { 2 } / 2 + \cdots + x ^ { n } / n ! + o \left( x ^ { n } \right)\)

\(\ln ( 1 + x ) = x - x ^ { 2 } / 2 + x ^ { 3 } / 3 + \cdot + ( - 1 ) ^ { n - 1 } x ^ { n } / n + o \left( x ^ { n } \right)​\)

\(\sin ( x ) = x - x ^ { 3 } / 6 + \cdots + ( - 1 ) ^ { n } x ^ { 2 n + 1 } / ( 2 n + 1 ) ! + o \left( x ^ { 2 n + 1 } \right)\)

\(\cos ( x ) = x ^ { 2 } / 2 + x ^ { 4 } / 24 + \cdots + x ^ { 2 n } / ( 2 n ) ! + o \left( x ^ { 2 n } \right)\)

凸函数的定义

一个函数f如果满足 \(f \left( \lambda x _ { 1 } + ( 1 - \lambda ) x _ { 2 } \right) \leq \lambda f \left( x _ { 1 } \right) + ( 1 - \lambda ) f \left( x _ { 2 } \right) , \forall \lambda \in ( 0,1 )\) 那么这个函数就是凸函数

一个函数二阶可微的函数f是凸函数,当且仅当f"(x)>=0,Vx.

琴生不等式

如果f是凸函数,那么对于任意的{x1,x2…,xn},以及正的权重系数{w1,w2,…,Wn},且w1+w2+…+wn=1,则如下不等式成立

\(f \left( \sum _ { k = 1 } ^ { n } w _ { k } \cdot x _ { k } \right) \leq \sum _ { k = 1 } ^ { n } w _ { k } \cdot f \left( x _ { k } \right)\)

方差定义

\(\operatorname { Var } ( X ) = E \{ X - E ( X ) ] ^ { 2 } \} = E \left( X ^ { 2 } \right) - E ^ { 2 } ( X )\)

无条件成立

\(\begin{array} { l } { \operatorname { Var } ( c ) = 0 } \\ { \operatorname { Var } ( X + c ) = \operatorname { Var } ( X ) } \\ { \operatorname { Var } ( k X ) = k ^ { 2 } \operatorname { Var } ( X ) } \end{array}​\)

X和Y 相互独立

\(\operatorname { Var } ( X + Y ) = \operatorname { Var } ( X ) + \operatorname { Var } ( Y )\)

\(E ( X ) = \int _ { - \infty } ^ { \infty } x f ( x ) d x​\)

概率论与数理统计

概率

条件概率:\(P ( A | B ) = \frac { P ( A B ) } { P ( B ) }​\)

全概率公式:\(P ( A ) = \sum _ { i } P \left( A | B _ { i } \right) P \left( B _ { i } \right)\)

贝叶斯(Bayes)公式:\(P \left( B _ { i } | A \right) = \frac { P \left( A | B _ { i } \right) P \left( B _ { i } \right) } { \sum _ { j } P \left( A | B _ { j } \right) P \left( B _ { j } \right) }\)

分布

几大分布 列表图形

概率与统计的关注点

概率论问问题的方式:

装箱问题 :将12件正品和3件次品随机装在3个箱子中,每箱装5件,则每箱中恰有1件次品的概率是多少?

数理统计问问题的方式:

正态分布的矩估计: 在正态分布的总体中采样得到n个样本:
X1,X2,…Xn,估计该总体的均值和方差。

重要的统计量

期望

  • 离散型 \(E ( X ) = \sum _ { i } x _ { i } p _ { i }\)
  • 连续型 \(E ( X ) = \int _ { - \infty } ^ { \infty } x f ( x ) d x\)

协方差

协方差的定义:

\(\operatorname { Cov } ( X , Y ) = E \{ [ X - E ( X ) ] [ Y - E ( Y ) ] \}\)

协方差的性质:

\(\begin{array} { c } { \operatorname { Cov } ( X , Y ) = \operatorname { Cov } ( Y , X ) } \\ { \operatorname { Cov } ( a X + b , c Y + d ) = \operatorname { acCov } ( X , Y ) } \\ { \operatorname { Cov } \left( X _ { 1 } + X _ { 2 } , Y \right) = \operatorname { Cov } \left( X _ { 1 } , Y \right) + \operatorname { Cov } \left( X _ { 2 } , Y \right) } \\ { \operatorname { Cov } ( X , Y ) = E ( X Y ) - E ( X ) E ( Y ) } \end{array}​\)

方差

定义

\(\operatorname { Var } ( X ) = E \{ X - E ( X ) ] ^ { 2 } \} = E \left( X ^ { 2 } \right) - E ^ { 2 } ( X )\)

无条件成立

\(\begin{array} { l } { \operatorname { Var } ( c ) = 0 } \\ { \operatorname { Var } ( X + c ) = \operatorname { Var } ( X ) } \\ { \operatorname { Var } ( k Y ) = k ^ { 2 } \operatorname { Var } ( X ) } \end{array}\)

X和Y相互独立的时候

\(\operatorname { Var } ( X + Y ) = \operatorname { Var } ( X ) + \operatorname { Var } ( Y )\)

大数定理和中心极限定理

  • 切比雪夫不等式
  • 大数定理
  • 中心极限定理

转载于:https://www.cnblogs.com/ruhai/p/10665831.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值