从一个节点开始,在每一步游走时有两个选择:移动到一个随机选择的邻点或者跳回起点。该算法通过反复探究一个网络的总体结构去估计两个节点之间的亲和程度。
随机游走过程反复迭代直到走遍所有节点,此时得到的概率向量包含所有节点与起点的亲和力打分。
算法描述:
P0是每个节点的初始概率值向量,pk在第k步时的值向量,g是在每一步游走时选择重启的种子节点,M是转移矩阵,相邻两次迭代的打分值低于m是为收敛。
从一个节点开始,在每一步游走时有两个选择:移动到一个随机选择的邻点或者跳回起点。该算法通过反复探究一个网络的总体结构去估计两个节点之间的亲和程度。
随机游走过程反复迭代直到走遍所有节点,此时得到的概率向量包含所有节点与起点的亲和力打分。
算法描述:
P0是每个节点的初始概率值向量,pk在第k步时的值向量,g是在每一步游走时选择重启的种子节点,M是转移矩阵,相邻两次迭代的打分值低于m是为收敛。
转载于:https://www.cnblogs.com/carol-wei/p/7609342.html