1084 外观数列(20 分)
外观数列是指具有以下特点的整数序列:
d, d1, d111, d113, d11231, d112213111, ...
它从不等于 1 的数字 d
开始,序列的第 n+1 项是对第 n 项的描述。比如第 2 项表示第 1 项有 1 个 d
,所以就是 d1
;第 2 项是 1 个 d
(对应 d1
)和 1 个 1(对应 11),所以第 3 项就是 d111
。又比如第 4 项是 d113
,其描述就是 1 个 d
,2 个 1,1 个 3,所以下一项就是 d11231
。当然这个定义对 d
= 1 也成立。本题要求你推算任意给定数字 d
的外观数列的第 N 项。
输入格式:
输入第一行给出 [0,9] 范围内的一个整数 d
、以及一个正整数 N(≤ 40),用空格分隔。
输出格式:
在一行中给出数字 d
的外观数列的第 N 项。
输入样例:
1 8
输出样例:
1123123111
PS:
初看这道题目,好眼熟,是不是很像 P1078的压缩字符串,岂止是像,那边的代码拿过来改一下就能用,这里题目说N<=40,这不是间接的告诉我们用递归么???哈哈,机智如我。
注意:1、确定好压缩次数。
2、有可能直接输出第一项(即不用压缩)(1分的测试点)。
推荐测试点:
in:
123 1
out:
123
#include <iostream>
#include<string>
using namespace std;
string compress(string s, int n) {
if (n == 1) //直到n=1时,不需要压缩
return s;
string cs; //压缩字符串
int count = 1;
for (int i = 0; i < s.length(); i++) {
if (s[i] == s[i + 1]) //与后一个进行比较
count++;
else {
cs += s[i];
cs += to_string(count);
count = 1;
}
}
s = cs;
return compress(s, n - 1); //递归再压缩一次
}
int main() {
string str;
int n;
cin >> str >> n;
cout << compress(str, n);;
return 0;
}