逻辑填空错题

(1)选项一定要看完

 

1.在劳动者权益不断________的当下,一些权利痛点也在日益凸显,全社会对低温下的劳动者某种程度上的忽视和漠视,使他们难以得到及时、有效的制度________和人文关怀。

依次填入画横线部分最恰当的一项是:

A显现 维护
B提升 保护
C完善 保障
D彰显 护佑
 
解析:看到后面的也在日益凸显,说明前面的词语和凸显表同意并列。排除BC。第二空很显然“护佑"更生动恰当。
 

2.负面新闻并不是永远都制造        ,从商业角度看,负面宣传在某种情况下可以         销售,尤其在公司和产品不知名的情况下。曾有研究者发现,如果某些书籍的作者让读者感觉          ,书被评为劣作却能起到相反的效果——它们的销售增加了

依次填入画横线部分最恰当的一项是:

A伤害 促进 亲切
B损失 带动 熟悉
C悲剧 刺激 陌生
D难题 提高 冷淡

 

3.意识形态与科学真理的关系是一个             的问题,强调二者的同一,认为统治意识即学术真理,无疑是 简单化和幼稚病,但强调二者的对立,认为学术思想为 科学,意识形态为         ,二者渺不相干,也同样是简单化。

依次填入画横线部分最恰当的一项是:

A包罗万象 迷信
B死而不僵 虚无
C一成不变 无意义
D老而常新 纯虚构
 
解析:包罗万象不简单,迷信不科学。
 

4.在现代化的生活里,有人每一天都_____在一系列数字里,BP机号码、手机号码、电脑密码、信用卡密码······

A困扰
B锁定
C固定
D纠缠
10

5.文化传统的延续,从来不是                地照搬照抄。取其精华,去其糟粕,根据时代发展做出合乎社会需求的调整,才是对文化的最好传承。

A不假思索
B囫囵吞枣
C按部就班
D一成不变
解析:不假思索和囫囵吞枣都是形容不加思考,与题意无关。对于多个答案可以放进去通顺的词语,我们要选那个能体现“题意”的,就是要体现作者要反应的意思的。这也是出题人的心思。

6.美国耶鲁大学持续12年的研究表明:由父母同时带大的孩子智商高,他们在学校里的成绩往往更好,将来走向社会也更容易成功。尽管很多男性已经领悟到父教的_______,但现实生活中父教的缺位并不鲜见。中国家庭分工普遍注重“男主外,女主内”,投入到孩子身上的时间自然就会减少;有些男性存在浓厚的“大男子主义”情结,认为父教是“_______”,就算有时间,也不愿陪伴孩子;还有的父亲尚未认识到父教的必要性和重要性。

依次填入横线处最恰当的一项是:

A大有可为 小题大做
B不可或缺 雕虫小技
C大有裨益 家长里短
D至关重要 大材小用
解析:这道题,我是很快就选了C,前部分确实是说父教能带来好处。但是出题人那么容易放过我们吗?答案是否定的,我看了解析说,题目说的是父教的重要性。所以,第一个空应该再B,C里面选。那我们来看第二空,第二空强调的是父教的是小事,用不着大男人来管,所以雕虫小技合适。其实不懂怎么说,有时候你一眼看中的答案不一定对,要中和两个空,而且结合答案选项进行分析。我们看强调好处的只有C,那出题人就没必要做第二空了。bc都是强调重要性,所以,理解出题人的意思很重要。

7.VR体验、动漫、动画等形式,从细节之处做设计,把故宫传统的文化元素        时尚新潮的当代工艺品中,就这样,故宫利用原创、金融和亚文化三驾马车,开拓出传统文化IP活化的新        ,揭示了优秀传统文化挖掘和        的巨大空间和可能性,也揭开传统文化市场开发庞大财富冰川的一角。

依次填入划横线部分最恰当的一项是:

A注入 途径 阐述
B融入 途经 阐释
C植入 路径 阐发
D加入 路子 阐明
 
解析:平时越不用的词语越要留心。很有可能就是最合适的。
8年轻干部要想行得端、走得正,就必须涵养道德操守,明礼诚信,特别是要敢于讲真话、讲实话,切忌开“空头支票”,             说好话、             说套话、             说大话、规避责任说假话。

依次填入划横线部分最恰当的一项是:

A曲意逢迎 心口不一 不切实际
B委曲求全 虚与委蛇 好高骛远
C阿谀奉承 独善其身 好大喜功
D投其所好 明哲保身 沽名钓誉
 
解析:阿谀奉承和曲意逢迎都有说话的意思,和后边的“说好话”重复了,典型的语病。所以答案选C。

每个民族都有自己的优秀品格,同样每个民族都有自己的历史痼疾。健康而优秀的民族心理必然善于扬长避短,精于            ,长于“取其精华去其糟粕”。

填入画横线部分最恰当的一项是:

填入画横线部分最恰当的一项是:

A去芜存菁(和后面意思重复
B弃旧图新(没有说到要图新
C激浊扬清
D拨乱反正(程度过重
 
9.虽然虚拟博物馆如雨后春笋般涌现,但博物馆管理人员依然相信这对实体博物馆而言是机遇,而非冲击。“比如举世闻名的艺术作品《蒙娜丽莎》,一些3D复制品可能将画作精细到连脸部细纹都能看得一清二楚,但大家还是               地涌入卢浮宫,因为即使复制出一模一样的《蒙娜丽莎》,博物馆里那种神圣、庄严的感觉还是无法复制。”管理人员如是说。

填入画横线部分最恰当的一项是:

A欢呼雀跃
B如痴如狂
C情有独钟
D欣喜若狂
 
解析:A,D表高兴,C项“情有独钟”指对某一事物特别喜欢,重点强调“独”,而文段并非强调大家只钟情于卢浮宫这一座博物馆,排除。只有B合适。 词语要表达的意思要和文段意思相吻合。不是通顺就可以。

10.她作品中的诗情和诗意,像清江锦石,像溪流清澈,可以是微波澛荡的滇池,也可以是烟水迷漾的太湖,      不是“波撼岳阳城”的云梦洞庭,      不是“波浪兼天”的长江,      不是“咆哮万里”的黄河。

A却 也 还
B可 也 而
C而 亦 更
D但 也 更
 
解析:第一次碰到这种题,CD其实都可以,但是要前后呼应。

转载于:https://www.cnblogs.com/aixinjueluo/p/11080805.html

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值