数据压缩 第五次作业

3-3  证明:I(X;Y)=H(X)-H(X|Y)

 

 

 

3-9  证明:没有冗余度的信源还能不能压缩?为什么?

  能。没有冗余度的信源,我们只能进行有损压缩,不能进行无损压缩。

 

3-12 证明:等概率分布的信源还能不能压缩?为什么?你能举例说明吗?

     能:至少可以进行有损压缩。因为“等概”未必“不相关”,例如:对正弦信号的均匀取样值。

 

3-15 有人认为:“图像的负片(黑白颠倒)比正片更容易压缩”。你同意他的观点吗?为什么?

     不同意。图像的正负片的熵是相同的,即该图像的冗余度是相同的,所以压缩的难易程度是相同的。

 

3.-16 有人认为:“相关的信源是非等概率分布的”。你同意他的观点吗?为什么?

     不同意。因为“等概”未必“不相关”,“不等概”未必“相关”。非等概率分布能说明存在冗余度,能够进行压缩,能得出该信源是非等概率分布的。 

转载于:https://www.cnblogs.com/rwg-xs/p/6103303.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值