loj #6122. 「网络流 24 题」航空路线问题

#6122. 「网络流 24 题」航空路线问题

题目描述

给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线。现要求找出一条满足下述限制条件的且途经城市最多的旅行路线。

  1. 从最西端城市出发,单向从西向东途经若干城市到达最东端城市,然后再单向从东向西飞回起点(可途经若干城市)。
  2. 除起点城市外,任何城市只能访问一次。

对于给定的航空图,试设计一个算法找出一条满足要求的最佳航空旅行路线。

输入格式

第一行有两个正整数 NNN 和 VVV,NNN 表示城市数,VVV 表示直飞航线数。
接下来的 NNN 行中每一行是一个城市名,可乘飞机访问这些城市。城市名出现的顺序是从西向东。也就是说,设 i,ji,ji,j 是城市表列中城市出现的位置次序,当 i>ji>ji>j 时,表示 城市 iii在城市 jjj 的东边,而且不会有两个城市在同一条经线上。城市名是一个长度不超过 151515 的字符串,串中的字符可以是大小写字母或阿拉伯数字。例如,AGR34\text{AGR34}AGR34 或 BEL4\text{BEL4}BEL4。
再接下来的 VVV 行中,每行有两个城市名,中间用空格隔开,如 city1 city2\text{city1 city2}city1 city2 表示 city1\text{city1}city1 到 city2\text{city2}city2 有一条直通航线,从 city2\text{city2}city2 到 city1\text{city1}city1 也有一条直通航线。

输出格式

输出最佳航空旅行路线。
第一行是旅行路线中所访问的城市总数 MMM。
接下来的 M+1M+1M+1 行是旅行路线的城市名,每行一个。首先是出发城市名,然后按访问顺序列出其它城市名。注意,最后一行(终点城市)的城市名必然是出发城市名。如果有多组最优解,输出任意一组均可;如果问题无解,则输出 No Solution!

样例
样例输入
8 9
Vancouver
Yellowknife
Edmonton
Calgary
Winnipeg
Toronto
Montreal
Halifax
Vancouver Edmonton
Vancouver Calgary
Calgary Winnipeg
Winnipeg Toronto
Toronto Halifax
Montreal Halifax
Edmonton Montreal
Edmonton Yellowknife
Edmonton Calgary
样例输出
7
Vancouver 
Edmonton 
Montreal
Halifax
Toronto 
Winnipeg
Calgary
Vancouver
数据范围与提示

对于所有数据,N<100N < 100N<100

 

 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<map>
#include<queue>
#define maxn 110
using namespace std;
int dis[maxn],head[maxn],n,m,S,T,num=1,ans;
bool v[maxn],vis[maxn];
map<string,int>p;
struct node{int to,pre,v,w;}e[maxn*maxn];
struct Node{int e,v;}pre[maxn*maxn];
string pp[maxn],s1,s2;
void Insert(int from,int to,int v,int w){
    e[++num].to=to;e[num].v=v;e[num].w=w;e[num].pre=head[from];head[from]=num;
    e[++num].to=from;e[num].v=0;e[num].w=-w;e[num].pre=head[to];head[to]=num;
}
bool spfa(int x){
    memset(dis,0,sizeof(dis));
    memset(vis,0,sizeof(vis));
    queue<int>q;
    q.push(x);vis[x]=1;
    while(!q.empty()){
        int now=q.front();q.pop();vis[now]=0;
        for(int i=head[now];i;i=e[i].pre){
            int to=e[i].to;
            if(e[i].v>0&&dis[now]+e[i].w>dis[to]){
                dis[to]=dis[now]+e[i].w;
                pre[to].e=i;pre[to].v=now;
                if(!vis[to]){vis[to]=1;q.push(to);}
            }
        }
    }
    return dis[T];
}
int max_flow(int f){
    int res=0,d;
    while(f){
        if(!spfa(S))return -1;
        d=f;
        for(int i=T;i!=S;i=pre[i].v)d=min(e[pre[i].e].v,d);
        res+=d*dis[T];f-=d;
        for(int i=T;i!=S;i=pre[i].v){
            e[pre[i].e].v-=d;
            e[pre[i].e^1].v+=d;
        }
    }
    return res;
}
int main(){
    scanf("%d%d",&n,&m);
    S=1,T=n*2;
    for(int i=1;i<=n;i++){
        cin>>pp[i];
        p[pp[i]]=i;
    }
    for(int i=1;i<=m;i++){
        cin>>s1>>s2;
        int a1=p[s1],a2=p[s2];
        if(a1>a2)swap(a1,a2);
        if(a1==1&&a2==n)Insert(a1+n,a2,2,0);
        else Insert(a1+n,a2,1,0);
    }
    Insert(S,1+n,2,1);
    Insert(n,T,2,1);
    for(int i=2;i<n;i++)Insert(i,i+n,1,1);
    ans=max_flow(2);
    if(ans<0){
        puts("No Solution!");
        return 0;
    }
    printf("%d\n",ans-2);
    cout<<pp[1]<<endl;
    for(int i=head[S+n];i;i=e[i].pre)
        if(!e[i].v&&!(i&1)){
            int to=e[i].to;
            while(to){
                cout<<pp[to]<<endl;
                v[to]=1;
                int j;
                for(j=head[to+n],to=0;j;j=e[j].pre)
                    if(!e[j].v&&!(j&1)){
                        to=e[j].to;break;
                    }
            }
            break;
        }
    for(int i=head[T-n];i;i=e[i].pre)
        if(!e[i^1].v&&(i&1)&&!v[e[i].to-n]){
            int to=e[i].to-n;
            while(to){
                cout<<pp[to]<<endl;
                v[to]=1;
                int j;
                for(j=head[to],to=0;j;j=e[j].pre)
                    if(!e[j^1].v&&(j&1)){
                        to=e[j].to-n;break;
                    }
            }
            break;
        }
}

 

转载于:https://www.cnblogs.com/thmyl/p/8945431.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值