坐标离散化

W*h的格子上画了n条或垂直或水平的宽度为1的直线,求这些直线将格子划分成了多少个区域?

 

输入

第一行三个整数w,h,n

接下来的4行为依次为x1,x2,y1,y2

1<=w,h<=1e6

1<=n<=500

 

输出

单独一行即区域的个数

 

样例

Input

10 10 5

1 1 4 9 10

6 10 4 9 10

4 8 1 1 6

4 8 10 5 10

 

Output

6

 

思路

准备好w*h的数组,利用dfs或bfs求联通块的个数的方法可以求解,但是这里的w和h太大了,空间不够,所以要用到坐标离散化的技巧,即将前后没有变化的行列消除后并不会影响区域的个数,所以数组里存储有直线的行列和它左右或上下的行列就足够了,空间大小不会超过6n*6n,再利用bfs求解联通块的数量(dfs可能会栈溢出)即可。

 

代码

 

#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

typedef pair<int, int> p;
const int maxn = 550;
const int dx[4] = { 0, 1, 0, -1 };
const int dy[4] = { 1, 0, -1, 0 };

int w, h, n;
int X1[maxn], X2[maxn], Y1[maxn], Y2[maxn];
bool fld[6 * maxn][6 * maxn];

int compress(int *x1, int *x2, int w) {//坐标离散化函数
	vector<int> xs;
	for (int i = 0; i < n; i++) {
		for (int d = -1; d <= 1; d++) {
			int tx1 = x1[i] + d;
			int tx2 = x2[i] + d;
			if (tx1 > 0 && tx1 <= w) xs.push_back(tx1);
			if (tx2 > 0 && tx2 <= w) xs.push_back(tx2);
		}
	}

	sort(xs.begin(), xs.end());
	xs.erase(unique(xs.begin(), xs.end()), xs.end());//经典的去重操作

	for (int i = 0; i < n; i++) {
		x1[i] = find(xs.begin(), xs.end(), x1[i]) - xs.begin();
		x2[i] = find(xs.begin(), xs.end(), x2[i]) - xs.begin();
	}
	return xs.size();
}

void bfs() {//用宽度优先搜索求联通块数量
	memset(fld, 0, sizeof(fld));
	for (int i = 0; i < n; i++) {
		for (int y = Y1[i]; y <= Y2[i]; y++)
			for (int x = X1[i]; x <= X2[i]; x++)
				fld[y][x] = 1;//注意y是行,x是列
	}

	int ans = 0;
	for (int y = 0; y < h; y++) {
		for (int x = 0; x < w; x++) {
			if (fld[y][x]) continue;
			ans++;

			queue<p> que;
			que.push(p(y, x));
			while (!que.empty()) {
				int y0 = que.front().first;
				int x0 = que.front().second;
				fld[y0][x0] = 1;
				que.pop();
				for (int k = 0; k < 4; k++) {
					int y = dy[k] + y0;
					int x = dx[k] + x0;
					if (y < 0 || y >= h || x < 0 || x >= w) continue;
					if (fld[y][x]) continue;
					que.push(p(y, x));
				}
			}
		}
	}
	printf("%d\n", ans);

}

int main() {
	while (scanf("%d%d%d", &w, &h, &n) == 3) {
		for (int i = 0; i < n; i++) scanf("%d", &X1[i]);
		for (int i = 0; i < n; i++) scanf("%d", &X2[i]);
		for (int i = 0; i < n; i++) scanf("%d", &Y1[i]);
		for (int i = 0; i < n; i++) scanf("%d", &Y2[i]);

		w = compress(X1, X2, w);
		h = compress(Y1, Y2, h);

		bfs();
	}
	return 0;
}

转载于:https://www.cnblogs.com/wafish/p/10465491.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值