W*h的格子上画了n条或垂直或水平的宽度为1的直线,求这些直线将格子划分成了多少个区域?
输入
第一行三个整数w,h,n
接下来的4行为依次为x1,x2,y1,y2
1<=w,h<=1e6
1<=n<=500
输出
单独一行即区域的个数
样例
Input
10 10 5
1 1 4 9 10
6 10 4 9 10
4 8 1 1 6
4 8 10 5 10
Output
6
思路
准备好w*h的数组,利用dfs或bfs求联通块的个数的方法可以求解,但是这里的w和h太大了,空间不够,所以要用到坐标离散化的技巧,即将前后没有变化的行列消除后并不会影响区域的个数,所以数组里存储有直线的行列和它左右或上下的行列就足够了,空间大小不会超过6n*6n,再利用bfs求解联通块的数量(dfs可能会栈溢出)即可。
代码
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef pair<int, int> p;
const int maxn = 550;
const int dx[4] = { 0, 1, 0, -1 };
const int dy[4] = { 1, 0, -1, 0 };
int w, h, n;
int X1[maxn], X2[maxn], Y1[maxn], Y2[maxn];
bool fld[6 * maxn][6 * maxn];
int compress(int *x1, int *x2, int w) {//坐标离散化函数
vector<int> xs;
for (int i = 0; i < n; i++) {
for (int d = -1; d <= 1; d++) {
int tx1 = x1[i] + d;
int tx2 = x2[i] + d;
if (tx1 > 0 && tx1 <= w) xs.push_back(tx1);
if (tx2 > 0 && tx2 <= w) xs.push_back(tx2);
}
}
sort(xs.begin(), xs.end());
xs.erase(unique(xs.begin(), xs.end()), xs.end());//经典的去重操作
for (int i = 0; i < n; i++) {
x1[i] = find(xs.begin(), xs.end(), x1[i]) - xs.begin();
x2[i] = find(xs.begin(), xs.end(), x2[i]) - xs.begin();
}
return xs.size();
}
void bfs() {//用宽度优先搜索求联通块数量
memset(fld, 0, sizeof(fld));
for (int i = 0; i < n; i++) {
for (int y = Y1[i]; y <= Y2[i]; y++)
for (int x = X1[i]; x <= X2[i]; x++)
fld[y][x] = 1;//注意y是行,x是列
}
int ans = 0;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
if (fld[y][x]) continue;
ans++;
queue<p> que;
que.push(p(y, x));
while (!que.empty()) {
int y0 = que.front().first;
int x0 = que.front().second;
fld[y0][x0] = 1;
que.pop();
for (int k = 0; k < 4; k++) {
int y = dy[k] + y0;
int x = dx[k] + x0;
if (y < 0 || y >= h || x < 0 || x >= w) continue;
if (fld[y][x]) continue;
que.push(p(y, x));
}
}
}
}
printf("%d\n", ans);
}
int main() {
while (scanf("%d%d%d", &w, &h, &n) == 3) {
for (int i = 0; i < n; i++) scanf("%d", &X1[i]);
for (int i = 0; i < n; i++) scanf("%d", &X2[i]);
for (int i = 0; i < n; i++) scanf("%d", &Y1[i]);
for (int i = 0; i < n; i++) scanf("%d", &Y2[i]);
w = compress(X1, X2, w);
h = compress(Y1, Y2, h);
bfs();
}
return 0;
}