【BZOJ3144】[Hnoi2013]切糕 最小割

本文详细解析了BZOJ3144[Hnoi2013]切糕问题,介绍了如何利用最小割算法解决此问题,并通过添加特殊边来满足光滑性要求D的限制。

【BZOJ3144】[Hnoi2013]切糕

Description

Input

第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。 
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。

Output

仅包含一个整数,表示在合法基础上最小的总不和谐值。

Sample Input

2 2 2
1
6 1
6 1
2 6
2 6

Sample Output

6

HINT

最佳切面的f为f(1,1)=f(2,1)=2,f(1,2)=f(2,2)=1

题解:APIO上学到了这种建图方法,赶紧%一发

先不考虑D的限制,那么原题就是无脑最小割,图大概长这样(只考虑两个纵轴)

但如果加上这条限制,我们该怎么做?这里先给出结论,假设D=1,从7->2连一条∞的边,从3->6连一条∞的边(其余同理),原图变成了这样

(画图软件有点尴尬~)

发现如果这样连边,我们就可以防止(1,2)与(7,8)同时被割掉,因为就算割掉这两条边,S仍然可以通过5-6-3-4与T联通,所以只能割别的边

一开始我比较懒,省略了S->1,4->T这两条长度为∞的边,结果狂WA不止,后来发现R可以等于1。。。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
#define P(A,B,C) ((C-1)*n*m+(B-1)*n+A)
using namespace std;
const int maxm=1000000;
const int maxn=100010;
queue<int> q;
int n,m,h,S,T,D,cnt,ans;
int to[maxm],next[maxm],val[maxm],head[maxn],d[maxn];
int dx[]={1,0,-1,0},dy[]={0,1,0,-1};
int rd()
{
	int ret=0,f=1;	char gc=getchar();
	while(gc<'0'||gc>'9')	{if(gc=='-')f=-f;	gc=getchar();}
	while(gc>='0'&&gc<='9')	ret=ret*10+gc-'0',gc=getchar();
	return ret*f;
}
int bfs()
{
	memset(d,0,sizeof(d));
	while(!q.empty())	q.pop();
	int i,u;
	d[S]=1,q.push(S);
	while(!q.empty())
	{
		u=q.front(),q.pop();
		for(i=head[u];i!=-1;i=next[i])
		{
			if(!d[to[i]]&&val[i])
			{
				d[to[i]]=d[u]+1;
				if(to[i]==T)	return 1;
				q.push(to[i]);
			}
		}
	}
	return 0;
}
int dfs(int x,int mf)
{
	if(x==T)	return mf;
	int i,k,temp=mf;
	for(i=head[x];i!=-1;i=next[i])
	{
		if(d[to[i]]==d[x]+1&&val[i])
		{
			k=dfs(to[i],min(temp,val[i]));
			if(!k)	d[to[i]]=0;
			val[i]-=k,val[i^1]+=k,temp-=k;
			if(!temp)	break;
		}
	}
	return mf-temp;
}
void add(int a,int b,int c)
{
	to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
	to[cnt]=a,val[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
}
int main()
{
	n=rd(),m=rd(),h=rd(),D=rd();
	memset(head,-1,sizeof(head));
	int i,j,k,l;
	S=0,T=n*m*h+1;
	for(k=1;k<=h;k++)
	{
		for(i=1;i<=n;i++)
		{
			for(j=1;j<=m;j++)
			{
				if(k==1)	add(S,P(i,j,k),rd());
				else	add(P(i,j,k-1),P(i,j,k),rd());
				if(k==h)	add(P(i,j,k),T,1<<30);
				if(k>D)	for(l=0;l<4;l++)	if(i+dx[l]&&i+dx[l]<=n&&j+dy[l]&&j+dy[l]<=m)
					add(P(i,j,k),P(i+dx[l],j+dy[l],k-D),1<<30);
			}
		}
	}
	while(bfs())	ans+=dfs(S,1<<30);
	printf("%d",ans);
	return 0;
}

 

转载于:https://www.cnblogs.com/CQzhangyu/p/6856838.html

智慧政务:打造“线上”有温度、“线下”有速度的新体验 在数字化浪潮的推动下,智慧政务正成为政府服务转型的重要方向。通过数据共享与流程优化,智慧政务解决方案致力于解决企业和群众反映强烈的办事难、办事慢、办事繁等问题,实现“一网通办”,让政务服务更加便捷、高效。 一、智慧政务的发展趋势 近年来,随着数字中国战略的深入实施,政务服务正朝着“全国一体化”方向发展。从最初的“可看可查”到如今的“一网通办”,政务服务经历了从互联网+政务服务(省市县)到长三角一体化政务平台,再到区域/全国一体化在线政务服务平台的飞跃。国务院及各级政府积极推进大数据、政务服务改革,明确建设目标、内容和节奏,为智慧政务的发展提供了强有力的政策支持。 二、智慧政务的核心挑战 尽管智慧政务取得了显著进展,但仍面临诸多挑战。跨部门、多流程环节的政务服务中,数据共享时效性差、权责不清成为制约协同效率的主要因素。同时,数据安全管控不足、数据质量问题缺乏责任追溯,也影响了政务服务的可信度和质量。此外,在线办理深度不够、群众认同感不高,以及政务热线服务多样性、便捷性和智能性不足,都是当前智慧政务需要解决的问题。 三、智慧政务解决方案的创新实践 针对上述挑战,智慧政务解决方案通过一系列创新实践,推动政务服务向线上线下一体化方向发展。具体而言,该方案包括以下几个关键方面: “一码通”服务:面向民众和企业,提供行、办、用、管一体化的政务服务。通过“一码通”,群众和企业可以在政务服务大厅及试点事项中,使用电子证照调用授权,实现身份证明、社会保障信息核验、医疗健康一码通办等功能。这不仅简化了办事流程,还提升了用户体验。 “一网通”服务:提供全程网办的政务服务。通过智能预审、远程面审、一窗办理、智能引导等功能,实现政务服务的全流程网上办理。群众和企业可以足不出户,通过政务服务官网、APP、小程序等多种渠道,享受7*24小时全天候的政务服务。 “一号通”服务:作为政务服务智能总客服,通过全媒体接入方式,整合热线、微信、邮件、短信等多种服务渠道,实现一号对外、服务通达。运用人工智能技术,构建自动服务应答体系,提高服务效率和质量。同时,通过大数据分析,及时掌握舆情热点和政情民意,为服务监督和实时决策提供依据。 “协同办”与“协同管”:面向政府工作人员,提供办、查、看、管一体化的工作门户。通过集成门户、工作中心、信息中心、知识中心等功能模块,实现政务工作的统一管理和高效协同。同时,整合监管数据、打通监管业务、感知监管风险,助力监管决策,提升政府治理能力。 四、智慧政务的未来展望 随着新基建的加速推进,5G、AI、工业互联网、物联网等新型基础设施的建设将为智慧政务的发展提供更强有力的支撑。未来,智慧政务将继续深化数据共享与流程优化,推动政务服务向更加智能化、便捷化、个性化的方向发展。同时,通过加强跨部门、跨领域的监管协同,提升政府治理能力和服务水平,为构建数字政府、掌上政府奠定坚实基础。 总之,智慧政务解决方案通过创新实践,正在逐步解决政务服务中的痛点问题,让“线上”服务更有温度、“线下”服务更有速度。随着技术的不断进步和应用的深入推广,智慧政务将迎来更加广阔的发展前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值