【三分+枚举】LNOI2017 d1t1 期末考试

题目描述:
有n位同学,每位同学都参加了全部的m门课程的期末考试,都在焦急的等待成绩的公布。第i位同学希望在第ti天或之前得知所有课程的成绩。如果在第ti天,有至少一门课程的成绩没有公布,他就会等待最后公布成绩的课程公布成绩,每等待一天就会产生C不愉快度。对于第i门课程,按照原本的计划,会在第bi天公布成绩。有如下两种操作可以调整公布成绩的时间:
1.将负责课程X的部分老师调整到课程Y,调整之后公布课程X成绩的时间推迟一天,公布课程Y成绩的时间提前一天;每次操作产生A不愉快度。
2.增加一部分老师负责学科Z,这将导致学科Z的出成绩时间提前一天;每次操作产生B不愉快度。
上面两种操作中的参数X,Y,Z均可任意指定,每种操作均可以执行多次,每次执行时都可以重新指定参数。现在希望你通过合理的操作,使得最后总的不愉快度之和最小
 
题解:
正解请见此处(先用三分缩小范围再枚举,因为函数图像可能不是平滑的,会有“锯齿”): https://www.luogu.org/wiki/show?name=%E9%A2%98%E8%A7%A3+P3745
讨论请见此处8.30关于单调性的探究: http://www.cnblogs.com/algonote/p/7441725.html
 
下面是我的60分做法:(要是这道题也没搞出来我就只剩20分了)

由于这道题比较复杂,有多个变量,所以不太可能直接出答案(咋不说是因为你太弱了呢),那么就应该是枚举从第1天(全部调整,老师不愉悦度最大)到第Max{b}天(不调整,老师不愉悦度为0)之间所有的不愉悦度了。

假设成绩在第d天公布,那么这时学生的不愉快度很好求(用前缀和),问题是老师的最小不愉快度如何快速求解。

出成绩的时间只取决于最后一课出成绩的时间,所以想要在第d天出成绩的话,就要让最后一课出成绩的时间小于等于第d天。

让最后一课提前一天有两种方式,A<B应该优先考虑方式一,A>B应该优先考虑方式二。

但是注意方式一的使用次数是有限制的,不能让课程出成绩时间由小于等于第x天变为大于第x天,因为这样就需要额外使用方式二将它的成绩时间移回第x天,得不偿失。

 1 long long p[100010];
 2 long long getsad(int d)
 3 {
 4     memcpy(p,o,m);//保留原数组o
 5     long long unhappy=0;
 6     for (;;)
 7     {
 8         sort(p,p+m);
 9         if (p[m]/*最晚一科出成绩的时间*/<=d) return unhappy;
10         if (a<b&&p[0]/*最早一科出成绩的时间*/<d)
11         {
12             //执行方案一 
13             p[m]--;p[0]++;
14             unhappy+=a;
15         }
16         else
17         {
18             //执行方案二
19             p[m]--;
20             unhappy+=b;
21         }
22     }
23 }

 

可是这样时间复杂度很高,为$O(n^3)$。

注意第x天前和第x天后的出成绩时间分别具有相同的性质,所以我们可以把他们分别组合起来。

如果A<B,那么就应尽可能多得用方案一,剩余的再用方案二。

如果A>B,那么就一直用方案二。

 1 #include <iostream>
 2 #include <algorithm>
 3 #include <cstdio>
 4 using namespace std;
 5 int a,b,n,m,t[100010],o[100010];
 6 long long stusad=0,ans=1e18,c,g[100010];
 7 long long getsad(int d)
 8 {
 9     long long front=0,back=0;
10     for (int i=0;i<m;i++)
11     {
12         if (o[i]<d)
13             front+=d-o[i];
14         else
15             back+=o[i]-d;
16     }
17     if (a<b)
18     {
19         if (front>back)
20             return back*a;
21         else
22             return front*a+(back-front)*b;
23     }
24     else
25         return back*b;
26 }
27 int main()
28 {
29     scanf("%d%d%lld%d%d",&a,&b,&c,&n,&m);
30     for (int i=0;i<n;i++) scanf("%d",&t[i]);
31     for (int i=0;i<m;i++) scanf("%d",&o[i]);
32     if (c==1e16)
33     {
34         sort(t,t+n);
35         ans=getsad(t[0]);
36     }
37     else
38     {
39         sort(o,o+m);
40         for (int i=0;i<n;i++)
41             for (int j=t[i]+1;j<=o[m-1];j++)
42                 g[j]+=c;
43         for (int i=1;i<=o[m-1];i++)
44         {
45             stusad+=g[i];
46             ans=min(ans,stusad+getsad(i));
47         }
48     }
49     printf("%lld",ans);
50     return 0;
51 }

 

这样复杂度就降到了$O(n^2)$

转载于:https://www.cnblogs.com/algonote/p/6790878.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值