题目描述:
有n位同学,每位同学都参加了全部的m门课程的期末考试,都在焦急的等待成绩的公布。第i位同学希望在第ti天或之前得知所有课程的成绩。如果在第ti天,有至少一门课程的成绩没有公布,他就会等待最后公布成绩的课程公布成绩,每等待一天就会产生C不愉快度。对于第i门课程,按照原本的计划,会在第bi天公布成绩。有如下两种操作可以调整公布成绩的时间:
1.将负责课程X的部分老师调整到课程Y,调整之后公布课程X成绩的时间推迟一天,公布课程Y成绩的时间提前一天;每次操作产生A不愉快度。
2.增加一部分老师负责学科Z,这将导致学科Z的出成绩时间提前一天;每次操作产生B不愉快度。
上面两种操作中的参数X,Y,Z均可任意指定,每种操作均可以执行多次,每次执行时都可以重新指定参数。现在希望你通过合理的操作,使得最后总的不愉快度之和最小
题解:
正解请见此处(先用三分缩小范围再枚举,因为函数图像可能不是平滑的,会有“锯齿”):
https://www.luogu.org/wiki/show?name=%E9%A2%98%E8%A7%A3+P3745
讨论请见此处8.30关于单调性的探究:
http://www.cnblogs.com/algonote/p/7441725.html
下面是我的60分做法:(要是这道题也没搞出来我就只剩20分了)
由于这道题比较复杂,有多个变量,所以不太可能直接出答案(咋不说是因为你太弱了呢),那么就应该是枚举从第1天(全部调整,老师不愉悦度最大)到第Max{b}天(不调整,老师不愉悦度为0)之间所有的不愉悦度了。
假设成绩在第d天公布,那么这时学生的不愉快度很好求(用前缀和),问题是老师的最小不愉快度如何快速求解。
出成绩的时间只取决于最后一课出成绩的时间,所以想要在第d天出成绩的话,就要让最后一课出成绩的时间小于等于第d天。
让最后一课提前一天有两种方式,A<B应该优先考虑方式一,A>B应该优先考虑方式二。
但是注意方式一的使用次数是有限制的,不能让课程出成绩时间由小于等于第x天变为大于第x天,因为这样就需要额外使用方式二将它的成绩时间移回第x天,得不偿失。
1 long long p[100010]; 2 long long getsad(int d) 3 { 4 memcpy(p,o,m);//保留原数组o 5 long long unhappy=0; 6 for (;;) 7 { 8 sort(p,p+m); 9 if (p[m]/*最晚一科出成绩的时间*/<=d) return unhappy; 10 if (a<b&&p[0]/*最早一科出成绩的时间*/<d) 11 { 12 //执行方案一 13 p[m]--;p[0]++; 14 unhappy+=a; 15 } 16 else 17 { 18 //执行方案二 19 p[m]--; 20 unhappy+=b; 21 } 22 } 23 }
可是这样时间复杂度很高,为$O(n^3)$。
注意第x天前和第x天后的出成绩时间分别具有相同的性质,所以我们可以把他们分别组合起来。
如果A<B,那么就应尽可能多得用方案一,剩余的再用方案二。
如果A>B,那么就一直用方案二。
1 #include <iostream> 2 #include <algorithm> 3 #include <cstdio> 4 using namespace std; 5 int a,b,n,m,t[100010],o[100010]; 6 long long stusad=0,ans=1e18,c,g[100010]; 7 long long getsad(int d) 8 { 9 long long front=0,back=0; 10 for (int i=0;i<m;i++) 11 { 12 if (o[i]<d) 13 front+=d-o[i]; 14 else 15 back+=o[i]-d; 16 } 17 if (a<b) 18 { 19 if (front>back) 20 return back*a; 21 else 22 return front*a+(back-front)*b; 23 } 24 else 25 return back*b; 26 } 27 int main() 28 { 29 scanf("%d%d%lld%d%d",&a,&b,&c,&n,&m); 30 for (int i=0;i<n;i++) scanf("%d",&t[i]); 31 for (int i=0;i<m;i++) scanf("%d",&o[i]); 32 if (c==1e16) 33 { 34 sort(t,t+n); 35 ans=getsad(t[0]); 36 } 37 else 38 { 39 sort(o,o+m); 40 for (int i=0;i<n;i++) 41 for (int j=t[i]+1;j<=o[m-1];j++) 42 g[j]+=c; 43 for (int i=1;i<=o[m-1];i++) 44 { 45 stusad+=g[i]; 46 ans=min(ans,stusad+getsad(i)); 47 } 48 } 49 printf("%lld",ans); 50 return 0; 51 }
这样复杂度就降到了$O(n^2)$