题意:求l r区间多少个数满足能整除数位上面所有的数(不包括0)
思路:数位dp,看到这个首先想到的是枚举模数,因为1-9 9个数的lcm只有2520,而且只有48个因子,dp[pos][v][now][mod],mod表示枚举的模数,v表示当前位%mod的值(这里有疑问的可以先看一下bzoj1799),now表示当前位出现的数的lcm,最后v==0&&now==mod的时候表示可行,但是内存一直超,即使把now和mod2维hash一下优化到48*48,内存也要900m,如果把mod一维去掉的话,每次枚举mod的时候都要初始化dp,显然会超时。这里可以固定mod,而不是枚举,固定mod为2520,即1-9的lcm,每次只保留当前数模mod的值,最后判断v%now==0即表示可行,因为mod很小,所以保证了时间和空间上都可以过去,这里可以固定mod的原因是,now一定是mod的因子,也就是说,所以最后的余数是不会影响这个数是不是now的倍数
AC代码:
#include "iostream" #include "iomanip" #include "string.h" #include "stack" #include "queue" #include "string" #include "vector" #include "set" #include "map" #include "algorithm" #include "stdio.h" #include "math.h" #pragma comment(linker, "/STACK:102400000,102400000") #define bug(x) cout<<x<<" "<<"UUUUU"<<endl; #define mem(a,x) memset(a,x,sizeof(a)) #define step(x) fixed<< setprecision(x)<< #define mp(x,y) make_pair(x,y) #define pb(x) push_back(x) #define ll long long #define endl ("\n") #define ft first #define sd second #define lrt (rt<<1) #define rrt (rt<<1|1) using namespace std; const ll mod=2520; const ll INF = 1e18+1LL; const int inf = 1e9+1e8; const double PI=acos(-1.0); const int N=1e5+1000; ll dp[20][2520][48]; int bit[20],has[3000]; ll dfs(int limit, int pos, int v, int now){ if(pos==-1) return now==0||v%now==0;//now为0的话即表示当前的数为00000,可判可不判,因为数据范围为1-int64 if(!limit && dp[pos][v][has[now]]!=-1) return dp[pos][v][has[now]]; int up=limit?bit[pos]:9; ll ans=0; for(int i=0; i<=up; ++i){ int k=i?i:1; ans+=dfs(limit&&i==bit[pos], pos-1, (v*10+i)%mod, now*k/__gcd(now,k)); } if(!limit) dp[pos][v][has[now]]=ans; return ans; } ll solve(ll x){ int p=0; ll ans=0; while(x>0){ bit[p++]=x%10; x/=10; } return dfs(1,p-1,0,1); } int main(){ ios::sync_with_stdio(false),cin.tie(0),cout.tie(0); int T,cnt=0; mem(has,-1); for(int i=0; i<(1<<8); ++i){ int mod=1; for(int j=i,o=2; j>0; j>>=1,++o){ if(j&1) mod=mod*o/__gcd(mod,o); } if(has[mod]==-1){ has[mod]=cnt++; } } cin>>T; mem(dp,-1); while(T--){ ll l,r; cin>>l>>r; cout<<solve(r)-solve(l-1)<<endl; } return 0; }