数论题常用式子

最近在做数论题,积累一些式子。

\([x=1]=\sum_{d|x}\mu(d)\)(莫比乌斯函数定义)

然后才推出莫比乌斯函数的公式以及莫比乌斯函数是积性函数。

\(\sum_{i=1}^n[\gcd(i,n)=1]=\varphi(n)\)(欧拉函数定义)

根据一些计数原理,能推出来欧拉函数的公式,从而推出欧拉函数是积性函数。

\(\sum_{i=1}^ni[\gcd(i,n)=1]=\frac n 2\varphi(n)\)(当n=1时为1)

或者写为\(\sum_{i=1}^ni[\gcd(i,n)=1]=\frac {[n=1]+n\varphi(n)}{2}\)

这是利用1~n-1内与n互质的数字有对称性,关于\(\frac n 2\)是对称的。我记得GXZ大佬曾经讲过。

我们考虑\(x\in[1,n)\)不与\(n\)互质,那么\(x\)注定和\(n\)有公因子,那么\(n-x\)\(n\)也注定有公因子(显然),所以1~n-1内所有不互质的数的位置是关于\(\frac n2\)对称的。因为1~n的数分为两种:与n互质或者不与n互质,因为互质的都对称了,所以不互质的也对称了。

所以假设一共有\(\varphi(n)\)个数,由于每一对对称的数的和都是\(n\),所以平均下来每个数是\(\frac n 2\),所以这个式子成立。至于\(n=1\)注意特殊情况要特判。

有了这个式子,在做一些和lcm有关的题就不用求mu提取d了,简化了做题步骤。(其实是因为那种老套路做不出来观察题解才想起有这么个式子的)

\(\sum_{d|n}\varphi(d)=n\)(欧拉反演???)

雷子卷积形式为\(\varphi*\mathbf{1}=\mathbf{id}\)

推导过程:

\(n=\sum_{d|n}\sum_{i=1}^n[gcd(i,n)=d]=\sum_{d|n}\sum_{i=1}^{n/d}[gcd(i,n/d)=1]=\sum_{d|n}\varphi(n/d)=\sum_{d|n}\varphi(d)\)

另外还有广义形式\((\mathbf{id_n}\cdot\varphi)*(\mathbf{id_n})=\mathbf{id_{n+1}}\)

\((\mathbf{id_n}\cdot\mu)*(\mathbf{id_n})=\epsilon\)

杜教筛的时候会用到这类性质:例如BZOJ4916--n=1 loj6229 n=2

做题时候一般可以强行把一个数拆成欧拉反演的形式,把一个[?=1]强行拆成莫比乌斯反演的形式

\(\sum_{d|n}\frac{\mu(d)}d=\frac{\varphi(n)}n\)不会证。。

转载于:https://www.cnblogs.com/oier/p/10293978.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值