Dirac Delta Function

也称为Degenerate pdf, 退化概率密度函数. 未经考证的解释是: 当正态分布的\(\sigma \to 0\)时, 正态分布就退化为这个分布了.


定义

\[ \delta(x) = \begin{cases} 0, x \neq 0 \\ \infty, x = 0 \end{cases} \]
因为是由正态分布退化而来的概率密度函数:
\[ \int _{-\infty}^{+\infty} \delta(x) dx = 1 \]
(不知道如何严格的证明)

Sifting Property

(TODO, 译为筛选性质?)
\[ \int _{-\infty}^{+\infty} f(x)\delta(x - \mu) dx = f(\mu) \]
证明如下:
\(t = x - \mu, x = t + \mu\), 得:
\[ \int _{-\infty}^{+\infty} f(x)\delta(x - \mu) dx = \int _{-\infty}^{+\infty} f(t + \mu)\delta(t) dt = \int _{-\epsilon}^{+\epsilon} f(t + \mu)\delta(t) dt = f(\mu)\int_{-\infty}^{+\infty}\delta(t)dt = f(\mu) \]
其中, \(\epsilon \to^+ 0\). 看来, \(f(x)\)还得在\((-\epsilon, +\epsilon)\)邻域内连续.

转载于:https://www.cnblogs.com/dengdan890730/p/6206079.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值