牛客 run(dp+前缀和)

本文详细解析了使用动态规划解决白云移动问题的算法,包括预处理、递推方程及取模运算等关键步骤,阐述了如何计算在特定范围内不同移动方式的数量。

题目大意:白云一次能走一个单位/跑k个单位,且不能连续跑,问白云移动距离位于[l, r]的不同方法数

由于询问组数较多,考虑预处理

设置二维数组dp[N][2],dp[i][0]表示走到数轴上i点的方法数,dp[i][1]表示跑到数轴上i点的方法数

设置一维数组ans[N],ans[i]表示移动距离落在[0,i]区间的方法数,所以在计算ans[i]时要加上ans[i-1],答案即为求前缀和:ans=ans[r]-ans[l-1]

递推方程:

$dp[i][0]=dp[i-1][0]+dp[i-1][1]$

$dp[i][1]=dp[i-k][0]$

$ans[i]=ans[i-1]+dp[i][0]+dp[i][1]$

初始值设置:dp[0][0]=dp[1][0]=0

由于数据较大,考虑边计算边取模(取模运算分配律)。另外,为了防止取模运算过程中出现负数,在作差时加上mod后再取模。

代码:

#include <bits/stdc++.h>
using namespace std;

const int N=1e5+5;
const int mod=1000000007;
int q, k, l, r;
int dp[N][3], ans[N];//dp[i][j]表示用j方式到数轴i位置一共的方法数,ans[i]表示从起点0到终点i一共的方法数
void pre()
{
        dp[0][0]=1;
        for(int i=1;i<=100000;++i){
        dp[i][0]=(dp[i-1][0]+dp[i-1][1])%mod;
        if(i>=k) dp[i][1]=dp[i-k][0]%mod;
        ans[i]=(ans[i-1]+dp[i][0]+dp[i][1])%mod;//加上ans[i-1]
    }
}
int main()
{
    cin>>q>>k;
    pre();
    while(q--){
        cin>>l>>r;
        cout<<(ans[r]-ans[l-1]+mod)%mod<<endl;
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/ChenyangXu/p/10726685.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值