C++二叉树前中后序遍历(递归&非递归)统一代码格式

统一下二叉树的代码格式,递归和非递归都统一格式,方便记忆管理。

 

三种递归格式:

 前序遍历:

void PreOrder(TreeNode* root, vector<int>&path)
{
    if (root)
    {
        path.emplace_back(root->val);
        PreOrder(root->left, path);
        PreOrder(root->right, path);
    }
}

中序遍历:

void InOrder(TreeNode* root, vector<int>& path)
{
    if (root)
    {
        InOrder(root->left, path);
        path.emplace_back(root->val);
        InOrder(root->right, path);
    }
}

后序遍历:

void PostOrder(TreeNode* root, vector<int>& path)
{
    if (root)
    {
        PostOrder(root->left, path);
        PostOrder(root->right, path);
        path.emplace_back(root->val);
    }
}

三种递归遍历不用多解释。

 

三种非递归格式:

前序遍历:

void PreOrderCycle(TreeNode* root, vector<int>& path)
{
    stack<pair<TreeNode*, bool>> s;
    s.emplace(make_pair(root, false));
    bool visited;
    while (!s.empty())
    {
        root = s.top().first;
        visited = s.top().second;
        s.pop();
        if (root == NULL)
            continue;
        if (visited)
            path.emplace_back(root->val);
        else
        {
            s.emplace(make_pair(root->right, false));
            s.emplace(make_pair(root->left, false));
            s.emplace(make_pair(root, true));
        }
    }
}

中序遍历:

void InOrderCycle(TreeNode* root, vector<int>& path)
{
    stack<pair<TreeNode*, bool>> s;
    s.emplace(make_pair(root, false));
    bool visited;
    while (!s.empty())
    {
        root = s.top().first;
        visited = s.top().second;
        s.pop();
        if (root == NULL)
            continue;
        if (visited)
            path.emplace_back(root->val);
        else
        {
            s.emplace(make_pair(root->right, false));
            s.emplace(make_pair(root, true));
            s.emplace(make_pair(root->left, false));
        }
    }
}

后序遍历:

void PostOrderCycle(TreeNode* root, vector<int>& path)
{
    stack<pair<TreeNode*, bool>> s;
    s.emplace(make_pair(root, false));
    bool visited;
    while (!s.empty())
    {
        root = s.top().first;
        visited = s.top().second;
        s.pop();
        if (root == NULL)
            continue;
        if (visited)
            path.emplace_back(root->val);
        else
        {
            s.emplace(make_pair(root, true));
            s.emplace(make_pair(root->right, false));
            s.emplace(make_pair(root->left, false));
        }
    }
}

以上三种遍历实现代码行数一模一样,如同递归遍历一样,只有三行核心代码的先后顺序有区别。

解释下三种非递归遍历(以下图举例):

对二叉树而言,将每个框内结点集都看做一个局部,那么局部有   A,A B C,B D E,D,E,C F G,F,G 并且可以发现每个结点元素都是相邻的两个局部的重合结点

算法流程:

1 每个结点元素都是相邻的两个局部的重合结点。对一个局部排好序后,通过取出一个重合结点过渡到与之相邻的局部进行新的局部排序。
2 用栈来保证局部顺序(排在前面的后入栈,排在后面的先入栈,保证局部元素出栈的顺序一定正确)
3 通过栈顶元素过渡到新局部的排序,对新局部的排序会导致该结点再次入栈,
4 当栈顶出现已完成过渡使命的结点时,就可以彻底出栈输出了,新栈顶元素会继续完成新局部的过渡
5 当所有结点都完成了过渡使命了,就全部出栈了。

 

参考:

https://www.jianshu.com/p/49c8cfd07410

 

转载于:https://www.cnblogs.com/zkfopen/p/11181302.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值