题意:给n(n≤2000)n(n\le 2000)n(n≤2000)个圆,上面的会盖住下面的圆,求周长的并
考虑到nnn很小,我们可以O(n2)O(n^2)O(n2)枚举每两个圆判一下覆盖了多少
然后对于一个圆把被覆盖的取个并集就可以了
#include<bits/stdc++.h>
using namespace std;
inline int read(){
char ch=getchar();
int res=0,f=1;
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch))res=res*10+(ch^48),ch=getchar();
return res*f;
}
const int N=1005;
const double pi=acos(-1);
double x[N],y[N],r[N],ans;
int n,tot;
struct data{
double l,r;
inline bool operator <(const data&a)const{
return l<a.l;
}
}a[N<<1];
inline double sqr(double x){
return x*x;
}
int main(){
n=read();
for(int i=1;i<=n;i++){
scanf("%lf%lf%lf",&r[i],&x[i],&y[i]);
}
for(int i=1;i<=n;i++){
ans+=2*pi*r[i],tot=0;
for(int j=i+1;j<=n;j++){
++tot;double dis=sqr(x[i]-x[j])+sqr(y[i]-y[j]);
if(sqr(r[i]+r[j])<=dis){
a[tot].l=a[tot].r=0;
}
else if(sqr(r[i]-r[j])>=dis){
if(r[i]>r[j])a[tot].l=a[tot].r=0;
else a[tot].l=0,a[tot].r=2*pi;
}
else{
double af=acos((sqr(r[i])+dis-sqr(r[j]))/(2*r[i]*sqrt(dis)));
double bt=atan2(y[j]-y[i],x[j]-x[i]);
if(bt<0)bt+=2*pi;
a[tot].l=bt-af,a[tot].r=bt+af;
if(a[tot].l<0)a[++tot].l=a[tot-1].l+2*pi,a[tot].r=2*pi,a[tot-1].l=0;
else if(a[tot].r>2*pi)a[++tot].r=a[tot-1].r-2*pi,a[tot].l=0,a[tot-1].r=2*pi;
}
}
sort(a + 1 , a + tot + 1);
double last = -1;
for(int j = 1;j<= tot;j++){
if(a[j].r<=last)continue;
if(a[j].l>last)ans-=(a[j].r-a[j].l)*r[i];
else ans-=(a[j].r-last)*r[i];
last=a[j].r;
}
}
printf("%.3lf",ans);
return 0;
}