Linux LVM磁盘管理

本文详细介绍LVM(Logical Volume Manager)的磁盘管理过程,包括物理卷(PV)、卷组(VG)、逻辑卷(LV)的概念及创建流程。从初始化120G SAS硬盘到创建PV、VG、LV,再到格式化、挂载和设置开机自动挂载,全面解析LVM的实用操作。

几个概念:

PV:物理卷,指LVM的基本逻辑卷,包含LVM的基本参数,如/dev/sdb1等。

VG:卷组,类似于非LVM的硬盘,由多个PV组成。

LV:逻辑卷,类似于非LVM硬盘中的分区。

PE:物理块,每个物理卷PV被划分成一个个PE大基本单元,具有唯一编号的PE是LVM的最小的寻址单元,PE的大小是可以配置的,默认为4M。

LE:逻辑块,逻辑卷LV被划分成可寻址的基本单元LE,在同一个卷组中,PE和LE是大小相同,并且一一对应的。

步骤:

Step1:在机器上插入120G的一块SAS硬盘,并且分区,初始化,配置分区的格式为LVM,使用fdisk分区指定参数为8e,如下图:

[root@esc networking]# fdisk -l

Disk /dev/sdb: 128.8 GB, 128849018880 bytes, 251658240 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

[root@esc networking]# fdisk /dev/sdb

Command (m for help): t
Selected partition 1
Hex code (type L to list all codes): 8e

Changed type of partition 'Linux' to 'Linux LVM'

Step2:创建PV,如下图:

[root@esc networking]# pvcreate /dev/sdb1
Physical volume "/dev/sdb1" successfully created.
[root@esc networking]#

Step3:创建VG,将创建的PV /dev/sdb1加入卷组,卷组的名称为RHEL

[root@esc networking]# vgcreate RHEL /dev/sdb1
Volume group "RHEL" successfully created

Step4:创建LV,名称为Data,容量为60G,如下图:

[root@esc networking]# lvcreate -L 60G -n Data RHEL
Logical volume "Data" created.

Step5:格式化LV,分区格式为xfs,如下图:

[root@esc networking]# mkfs.xfs /dev/RHEL/Data
meta-data=/dev/RHEL/Data isize=256 agcount=4, agsize=3932160 blks
= sectsz=512 attr=2, projid32bit=1
= crc=0 finobt=0
data = bsize=4096 blocks=15728640, imaxpct=25
= sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0 ftype=0
log =internal log bsize=4096 blocks=7680, version=2
= sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0
[root@esc networking]#

 Step6:创建挂载点/data,将分区挂载上去,如下图:

[root@esc networking]# mkdir /data
[root@esc networking]# mount /dev/RHEL/Data /data
[root@esc networking]# df -hi
Filesystem Inodes IUsed IFree IUse% Mounted on
devtmpfs 484K 371 483K 1% /dev
tmpfs 491K 1 491K 1% /dev/shm
tmpfs 491K 462 490K 1% /run
tmpfs 491K 13 491K 1% /sys/fs/cgroup
/dev/mapper/centos-root 45M 69K 44M 1% /
/dev/sda1 500K 334 500K 1% /boot
/dev/mapper/centos-home 22M 8 22M 1% /home
tmpfs 491K 1 491K 1% /run/user/1000
/dev/mapper/RHEL-Data 60M 3 60M 1% /data
[root@esc networking]#

 Step7:修改fstab开机挂载,如下图:

[root@esc networking]# blkid /dev/RHEL/Data
/dev/RHEL/Data: UUID="9d9e1e69-9ad5-4d08-894c-50e111faf951" TYPE="xfs"

[root@esc networking]# vi /etc/fstab 

# /etc/fstab
# Created by anaconda on Sun Jan 20 05:11:51 2019
#
# Accessible filesystems, by reference, are maintained under '/dev/disk'
# See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info
#
/dev/mapper/centos-root / xfs defaults 0 0
UUID=cd2fc291-2a9c-4479-b2c0-dddfbe129d6c /boot xfs defaults 0 0
/dev/mapper/centos-home /home xfs defaults 0 0
/dev/mapper/centos-swap swap swap defaults 0 0
UUID=9d9e1e69-9ad5-4d08-894c-50e111faf951 /data xfs defaults 0 0

 

转载于:https://www.cnblogs.com/networking/p/10295249.html

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值