异常检测LOF

局部异常因子算法-Local Outlier Factor(LOF)
在数据挖掘方面,经常需要在做特征工程和模型训练之前对数据进行清洗,剔除无效数据和异常数据。异常检测也是数据挖掘的一个方向,用于反作弊、伪基站、金融诈骗等领域。

异常检测方法,针对不同的数据形式,有不同的实现方法。常用的有基于分布的方法,在上、下α分位点之外的值认为是异常值(例如图1),对于属性值常用此类方法。基于距离的方法,适用于二维或高维坐标体系内异常点的判别,例如二维平面坐标或经纬度空间坐标下异常点识别,可用此类方法。

这次要介绍一下一种基于密度的异常检测算法,局部异常因子LOF算法(Local Outlier Factor)

用视觉直观的感受一下,如图2,对于C1集合的点,整体间距,密度,分散情况较为均匀一致,可以认为是同一簇;对于C2集合的点,同样可认为是一簇。o1、o2点相对孤立,可以认为是异常点或离散点。现在的问题是,如何实现算法的通用性,可以满足C1和C2这种密度分散情况迥异的集合的异常点识别。LOF可以实现我们的目标。

这里写图片描述 

下面介绍LOF算法的相关定义:
  1) d(p,o):两点p和o之间的距离。
  2) k-distance:第k距离
    对于点p的第k距离dk(p)定义如下:
    dk(p)=d(p,o),并且满足:
      a) 在集合中至少有不包括p在内的k个点o' ∈ C{x ≠ p}, 满足d(p,o') ≤ d(p,o) 。
      b) 在集合中最多有不包括p在内的k−1个点o' ∈ C{x ≠ p},满足d(p,o') < d(p,o)。

               如下图,离p第5远的点在以p为圆心,d5(p)为半径的

图3  3) k-distance neighborhood of p:第k距离邻域
    点p的第k距离邻域Nk(p),就是p的第k距离即以内的所有点,包括第k距离。
    因此p的第k邻域点的个数 |Nk(p)| ≥ k。
  4) reach-distance:可达距离
    点o到点p的第k可达距离定义为:reach−distancek(p,o) = max{dk(o), d(p,o)}
    也就是,点o到点p的第k可达距离,至少是o的第k距离,或者为o、p间的真实距离。
    这里写图片描述
  5) local reachability density:局部可达密度
    点p的局部可达密度表示为:
    表示点p的第k邻域内的点到p的平均可达距离的倒数。 

  6) local outlier factor:局部离群因子
    点p的局部离群因子表示为:
    表示点p的邻域点Nk(p)的局部可达密度与点p的局部可达密度之比的平均数。

    local outlier factor越接近1,说明p的其邻域点密度差不多,p可能和邻域同属一簇;

    local outlier factor越小于1,说明p的密度高于其邻域点密度,p为密集点;

    local outlier factor越大于1,说明p的密度小于其邻域点密度,p越可能是异常点。

 

因为LOF对密度的是通过点的第k邻域来计算,而不是全局计算,因此得名为“局部”异常因子,这样,对于图1的两种数据集C1和C2,LOF完全可以正确处理,而不会因为数据密度分散情况不同而错误的将正常点判定为异常点。

转自:https://blog.csdn.net/wangyibo0201/article/details/51705966

转载于:https://www.cnblogs.com/coshaho/p/9807923.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: LOF(Local Outlier Factor)异常检测算法是一种基于密度的异常检测方法。它通过计算每个数据点相对于其邻域点的密度比来判断其是否为异常点。 LOF算法的代码实现如下: 1. 首先,需要定义一个计算距离的函数,可以使用欧氏距离或者其他距离度量方法。 2. 然后,需要确定一个参数k,表示每个数据点的邻域大小。可以通过手动选择或者使用交叉验证等方法进行确定。 3. 对于每个数据点,计算其k个最近邻的距离,然后计算该数据点与其k个最近邻的平均距离。 4. 对于每个数据点,计算其邻域点的密度比,即该数据点周围数据点的平均距离与其k个最近邻的平均距离的比值。 5. 根据上述密度比的计算结果,可以将数据点分为异常点和正常点。对于具有较低密度比值的数据点,可以认为是异常点,而具有较高密度比值的数据点则认为是正常点。 LOF算法的时间复杂度为O(n^2),其中n是数据点的数量。对于大规模数据,可能需要引入近似算法或者其他优化方法来提高计算效率。 总结来说,LOF异常检测算法通过计算每个数据点相对于其邻域点的密度比,来判断其是否为异常点。通过一系列的计算步骤和参数设置,可以得到数据点的异常程度评估。 ### 回答2: LOF(局部离群因子)异常检测算法是一种用来识别数据集中离群点的算法。它基于一种理念:离群点的周围密度相对较低,而正常点的周围密度相对较高。 LOF算法的步骤如下: 首先,对于数据集中的每个点,计算该点与其邻居点的距离。邻居点是指这个点周围的其他点。 然后,计算局部可达密度(Local Reachability Density,LRD)值。对于每个点,LRD值是该点与其邻居点的平均可达距离的倒数。可达距离是指两个点之间需要经过的最短路径长度。 接下来,计算局部离群因子(Local Outlier Factor,LOF)值。对于每个点,LOF值是该点的邻居点的平均LRD值与该点的LRD值的比值。LOF值越大,表示该点越有可能是离群点。 最后,根据LOF值对所有点进行排序,选取具有较高LOF值的点作为离群点。 下面是一个简化的LOF异常检测算法的Python代码示例: ```python import numpy as np from sklearn.neighbors import LocalOutlierFactor # 加载数据 data = np.loadtxt('data.csv', delimiter=',') # 创建LOF模型 lof = LocalOutlierFactor(n_neighbors=20) # 训练模型并预测异常值 outliers = lof.fit_predict(data) # 输出异常值 print(data[outliers==-1]) ``` 上述代码中,我们首先加载数据集,然后创建了一个LOF模型。模型使用最近的20个邻居来计算LOF值。接着我们用数据来训练模型,并预测异常值。最后,我们将预测的异常值输出到控制台。 LOF算法是一种常用的异常检测算法,它能够在大多数情况下有效地检测出离群点。但是,在使用LOF算法之前,我们需要对数据集进行适当的预处理和参数调优,以提升算法的性能。 ### 回答3: LOF(Local Outlier Factor)异常检测算法是一种用于发现数据集中的异常点的算法。它的基本思想是通过比较每个数据点与其周围数据点的密度来确定其异常程度。 下面是LOF异常检测算法的代码示例: 1. 导入所需的库: ``` import numpy as np from sklearn.neighbors import LocalOutlierFactor ``` 2. 准备数据集: ```` X = np.array([[1, 1], [1, 2], [2, 2], [2, 3], [8, 7], [8, 8], [25, 80], [80, 80]]) ``` 3. 创建LOF模型并进行训练: ``` lof = LocalOutlierFactor(n_neighbors=5) lof.fit(X) ``` 4. 预测数据集中的异常点: ``` y_pred = lof.predict(X) ``` 在这个例子中,我们创建了一个包含8个数据点的数据集。然后,我们使用`LocalOutlierFactor`类创建了LOF模型,并使用`fit`方法对数据进行训练。接下来,我们使用`predict`方法对数据集中的每个点进行预测,得到的结果是一个数组,其中1表示正常点,-1表示异常点。 LOF算法通过计算每个数据点与其最近邻点的密度比来判断其异常程度,密度比越小表示越异常。可以根据需要调整`n_neighbors`参数来控制最近邻点的数量,从而影响LOF算法的敏感度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值