【树形DP】【P3177】[HAOI2015] 树上染色

Description

给定一棵 \(n\) 个点的带权树,要求选 \(k\) 个点染成黑色,剩下染成白色,最大化两两同色点之间的距离和。

Limitations

\(0 \leq k \leq n \leq 2000\)

Solution

首先看一个trick:

考虑如下遍历一棵树的伪代码:

func dfs(u):
  size[u] <- 1
  for v in clild[u] do
    dfs(v)
    for i = 1 : size[u] do
      for j = 1: size[v] do
        do sth
      end
    end
    size[u] <- size[u] + size[v]
  end
end func

如果认为do sth的复杂度是 \(O(T)\) 的话,那么上述伪代码的时间复杂度是 \(O(n^2T)\),也就是说上述遍历整棵树外加 \(3\) 层 for 循环的时间复杂度是 \(O(n^2)\)

证明上可以考虑如果记录每个点的 dfs 序,\(i\) 可以看作枚举 \(u\) 所有已经到达过的除 \(v\) 及其子树以外的后代。\(j\) 可以看作枚举 \(v\) 的后代。那么考虑任何一对点都只会在他们的 LCA \(u\) 处被枚举到,即每对点只会枚举一次,且 \(i\) 的 dfs 序一定小于 \(j\) 的 dfs 序,由于整个 dfs 序序列的顺序对个数又 \(O(n^2)\) 个,所以内层两层循环的总次数是 \(O(n^2)\) 的。于是上述代码的时间复杂度是 \(O(n^2T)\),其中 do sth 的时间复杂度是 \(O(T)\)

回到这个题,最直接的DP是设 \(f_{u, i}\) 为以 \(u\) 为根的子树,选了 \(i\) 个黑点的最优答案,但是发现无法转移,因为全局最优解和局部最优没什么关系,于是考虑像 [NOI2019]回家的路 一样,对贡献去做DP。

考虑将上述状态更换为以 \(u\) 为根的子树,选了 \(i\) 个黑点对答案的最大贡献是多少,在转移时考虑每个子树的贡献即可。

具体的,设 \(f_{u, i, j}\) 为以 \(u\) 为根的子树,考虑前 \(i\) 个孩子,选了 \(j\) 个黑点的最大贡献。

那么转移显然:

\[f_{u,i,j} = \max_{h = 0}^{j} f_{u, i-1, h} + f_{v, size[v], j-h} + val\]

其中 \(val\) 是这条边对答案造成的贡献,具体为边两侧黑点个数的乘积加上两侧白点个数的乘积的和再乘上边权。

例如子树中选择了 \(x\) 个黑点,那么贡献为

\[[x \times (k-x) + (size_v - x) \times (n - k - size_v + x)] \times e_w\]

其中 \(e_w\) 为边权。

考虑上述转移中,\(u\) 的状态 \(i\) 只依赖于状态 \(i-1\)\(size_v\),因此可以滚动数组。滚动后的状态转移方程为:

\[f_{u,j} = \max_{h=0}^j f_{u, h} + f_{v, j-h} + val\]

再转移时需要保证 \(f_{u,h}\) 是没有被 \(v\) 更新过的答案,也就是说比 \(j\) 小的状态应该在 \(j\) 之后更新,因此倒序枚举 \(j\) 即可。

在考虑最后一个问题:我们设计的方程是填表转移,即枚举了上面伪代码中 \(i\)\(j\) 的和以及 \(i\),只有这样才能保证方程中 \(j\) 的转移是单调的从而滚动数组,因此我们需要把上述伪代码改成外层枚举两数和,内层枚举除 \(v\) 以外的已遍历过的子树的形式。

func dfs(u):
  size[u] <- 1
  for v in clild[u] do
    dfs(v)
    size[u] <- size[u] + size[v]
    for sum = 1 : size[u] do
      for i = max(0, sum - size[v]) : size[v] do
        do sth
      end
    end
  end
end func

虽然写成这样的时间复杂度十分难以分析,但是枚举和再枚举其中一个的复杂度显然和枚举两个求和的复杂度相同,因此上述代码的时间复杂度也为 \(O(n^2T)\)

由于单次转移是 \(O(1)\) 的,因此算法的总时间复杂度 \(O(n^2)\)

Code

#include <cstdio>
#include <cstring>
#include <algorithm>

const int maxn = 2003;

int n, K, dK;
int sz[maxn];
ll frog[maxn][maxn];

struct Edge {
  int v, w;
  Edge *nxt;

  Edge(const int _v, const int _w, Edge *h) : v(_v), w(_w), nxt(h) {}
};
Edge *hd[maxn];

void dfs(const int u, const int fa);

int main() {
  freopen("1.in", "r", stdin);
  qr(n); qr(K); dK = n - K;
  for (int i = 1, u, v, w; i < n; ++i) {
    u = v = w = 0; qr(u); qr(v); qr(w);
    hd[u] = new Edge(v, w, hd[u]);
    hd[v] = new Edge(u, w, hd[v]);
  }
  dfs(1, 0);
  qw(frog[1][K], '\n', true);
  return 0;
}

void dfs(const int u, const int fa) {
  sz[u] = 1;
  memset(frog[u] + 2, -1, 16008);
  for (auto e = hd[u]; e; e = e->nxt) if (e->v != fa) {
    int v = e->v; dfs(v, u); sz[u] += sz[v];
    for (int i = std::min(sz[u], K); ~i; --i) {
      for (int  j = i, lim = std::max(0, i - sz[v]); j >= lim; --j) if (~frog[u][j]) {
        int k = i - j; if (frog[v][k] == -1) continue;
        ll val = (1ll * k * (K - k) + 1ll * (sz[v] - k) * (dK - sz[v] + k)) * e->w;
        frog[u][i] = std::max(frog[u][i], frog[u][j] + frog[v][k] + val);
      }
    }
  }
}

Summary

1、上面那种神奇的枚举方式遍历整棵树的时间复杂度是 \(O(n^2)\)

2、当问题不满足最优子结构时,可以考虑DP每个子问题对答案的贡献。

3、很多时候刷表法难以滚动数组,需要转化成填表法

appreciation

感谢 @DDOSvoid 大爷与我的讨论以及对我的启发

转载于:https://www.cnblogs.com/yifusuyi/p/11303111.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这道题目还可以使用状数组或线段来实现,时间复杂度也为 $\mathcal{O}(n\log n)$。这里给出使用状数组的实现代码。 解题思路: 1. 读入数据; 2. 将原数列离散化,得到一个新的数列 b; 3. 从右往左依次将 b 数列中的元素插入到状数组中,并计算逆序对数; 4. 输出逆序对数。 代码实现: ```c++ #include <cstdio> #include <cstdlib> #include <algorithm> const int MAXN = 500005; struct Node { int val, id; bool operator<(const Node& other) const { return val < other.val; } } nodes[MAXN]; int n, a[MAXN], b[MAXN], c[MAXN]; long long ans; inline int lowbit(int x) { return x & (-x); } void update(int x, int val) { for (int i = x; i <= n; i += lowbit(i)) { c[i] += val; } } int query(int x) { int res = 0; for (int i = x; i > 0; i -= lowbit(i)) { res += c[i]; } return res; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); nodes[i] = {a[i], i}; } std::sort(nodes + 1, nodes + n + 1); int cnt = 0; for (int i = 1; i <= n; ++i) { if (i == 1 || nodes[i].val != nodes[i - 1].val) { ++cnt; } b[nodes[i].id] = cnt; } for (int i = n; i >= 1; --i) { ans += query(b[i] - 1); update(b[i], 1); } printf("%lld\n", ans); return 0; } ``` 注意事项: - 在对原数列进行离散化时,需要记录每个元素在原数列中的位置,便于后面计算逆序对数; - 设状数组的大小为 $n$,则状数组中的下标从 $1$ 到 $n$,而不是从 $0$ 到 $n-1$; - 在计算逆序对数时,需要查询离散化后的数列中比当前元素小的元素个数,即查询 $b_i-1$ 位置上的值; - 在插入元素时,需要将离散化后的数列的元素从右往左依次插入状数组中,而不是从左往右。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值