诗经与当代流行歌曲相通之处—重章叠句

本文探讨了《诗经》中重章叠句手法及其在现代流行歌曲中的延续。通过对比《诗经》与现代歌曲,如邓丽君的《月亮代表我的心》、王菲的《不留》及张靓颖的《放轻松》,展示了这种古老技巧如何跨越时空依然流行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

诗经来自于远古先民的劳动之中,大多数配乐演奏。相当于现今通俗歌曲的歌词。根植于人民内心深处,更有“不学《诗》,无以言。”

看看当代的流行歌曲这些精髓可能绝大多数是由一脉相承的音乐的特性来决定的。古今三千年来的不变的一种运用在歌词当中的手法,叫“重叠手法”,这个“重叠手法”包括叠字,包括叠词、叠句、甚至是一段一段的重叠,称为叠章。《诗经》里面的所有的诗歌几乎都是重叠手法运用的典范。

《采葛》

彼采葛兮,一日不见,如三月兮!

彼采萧兮,一日不见,如三秋兮!

彼采艾兮!一日不见,如三岁兮!

这就是当时流行的一首歌,而且这首歌我们看到它只有三段九句。但是三段九句它只换了几个词,只换了六个词!它是典型的重叠,也就是我们所说的“叠章手法”的运用。为什么诗歌会有那么多的重叠手法呢?不是因为诗人偷懒,我换一个词就能够再起一段,而是因为歌唱的需要。所以我们可以回顾一下我们所熟悉的流行歌曲,是不是几乎每一首流行歌曲都运用了这种断位的、重叠的手法。比如说邓丽君的《月亮代表我的心》

你问我爱你有多深 我爱你有几分我的情也真 月亮代表我的心
你问我爱你有多深 我爱你有几分 我的情不移 我的爱不变 月亮代表我的心
轻轻的一个吻 已经打动我的心 深深的一段情 教我思念到如今
你问我爱你有多深 我爱你有几分 你去想一想 你去看一看 月亮代表我的心

不断的重复,不断的重复,很简单但是很上口。所有的人都会唱,而且所有人都能记住,那这样的流行歌曲在当代应该说非常的常见。

再看一首都非常熟悉的,王菲的《不留》,典型的叠句的用法。

我把风景给了你日子给了他 我把笑容给了你宽容给了他
我把思念给了你时间给了他 我把眼泪给了你
我把照片给了你日历给了他 我把颜色给了你风景给了他

我把距离给了你呼吸给了他 我把烟花给了你节日给了他

就是每一句都在重复同样的句音,只更改少数的几个字。我们可以看到她的歌词,是同样的句型再更换少数的词来这种重叠手法。我们可能回忆我们熟悉的古典的诗歌里面,这样的手法是经常用到的。如果从歌的角度来理解,我们就不难知道原来这是歌的需要,它需要这样的重叠。所以不管是汉代的乐府,还是唐诗还是宋词,一直到我们今天的流行歌曲都是如此。
再来看一下张靓颖的《放轻松》
  让眉头舒展一点  让呼吸从容一点 让匆匆脚步放慢 让压力烟消云散 轻轻松松放轻松
  让世界随着随着心转动 轻轻松松放轻松 我要看到你看你灿烂笑容 轻轻松松放轻松
  到处都有你都有你的感动 轻轻松松放轻松 明天的你一定会很成功 轻轻松松放轻松
  让世界随着随着心转动 轻轻松松放轻松 我要看到你看你灿烂笑容 轻轻松松放轻松
 
 到处都有你都有你的感动 轻轻松松放轻松 明天的你会成功
歌词虽然简单,但是轻松就是需要简单来描绘,
况且通俗易懂,流传度就容易高.这样便符合了流行歌曲的特征.
  
由此可以看出诗经中的精髓部分重章叠句对当代流行歌曲的影响在于其在一脉相承的音乐的特性。

转载于:https://www.cnblogs.com/Tigerlee/archive/2008/12/21/1359342.html

数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:11,787张图片 - 验证集:643张图片 - 测试集:431张图片 总计:12,861张真实场景图片 分类类别: - Elephant(象):陆生大型哺乳动物,包含多种自然环境中的活动姿态。 - Bear(熊):涵盖不同种类的熊科动物,包括静态及运动状态。 - Cheetah(猎豹):强调高速运动状态下的动态捕捉样本。 - Deer(鹿):包含林地和草原环境中的鹿群及个体样本。 - Fox(狐):涵盖多种狐狸品种的多样化行为模式。 标注格式: YOLO格式,包含标准化的归一化坐标标注,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面视角等多角度拍摄的野生动物图像,包含昼夜不同光照条件下的样本。 二、适用场景 生态监测系统开发: 支持构建自然保护区智能监测系统,实时检测野生动物活动轨迹并统计种群分布。 自动驾驶环境感知: 用于训练车辆视觉系统识别道路周边野生动物的能力,提升行车安全系数。 野生动物研究分析: 提供动物行为学研究的结构化数据支撑,支持物种活动模式分析栖息地研究。 安防监控系统升级: 适用于农场、林区等场景的智能安防系统开发,精准识别潜在动物威胁。 三、数据集优势 多物种覆盖: 包含5类高关注度野生动物,覆盖陆地生态系统的关键指示物种。 场景多样性: 数据采集涵盖丛林、草原、山地等多种自然生境,增强模型泛化能力。 标注专业性: 经动物学专家校验的精准边界框标注,确保目标定位分类准确性。 任务适配性: 原生YOLO格式支持快速迁移至目标检测、行为分析、密度估计等衍生任务。 规模优势: 超万级标注样本量,有效支撑深度神经网络的特征学习需求。
数据集介绍:STAS目标检测数据集 数据集名称:STAS目标检测数据集 图片数量: - 训练集:733张 - 验证集:211张 - 测试集:105张 总计:1,049张图像 分类类别: - STAS:特定场景下的目标检测类别(具体语义需结合业务背景) - stas:小写形式分类标签,STAS形成多粒度标注层级 标注格式: YOLO格式,包含归一化中心坐标及边界框尺寸,可直接用于目标检测模型训练。 数据特性: 标注框尺寸分布多样,涵盖大尺度物体(如宽度占比8.5%、高度占比20.8%)到小目标(如宽度占比2.1%、高度占比5.7%),适配多尺度检测需求。 航空影像分析: 适用于无人机/卫星图像中的目标定位识别,支持农业监测、环境评估等场景。 工业检测系统: 可训练PCB板缺陷检测、传送带物料识别等工业视觉模型,框体标注适配机械臂抓取坐标计算。 智慧城市应用: 支持交通监控、基础设施检测等城市管理场景中的多目标追踪任务。 学术研究: 提供标准化YOLO格式数据,适用于目标检测领域的模型对比实验算法创新研究。 标注质量突出: 边界框覆盖密集场景(单图最高达7个实例),包含部分叠目标标注,考验模型鲁棒性。 空间分布全面: 标注框位置覆盖图像中心区(如坐标0.39,0.33)到边缘区域(如坐标0.95,0.85),提升模型全图检测能力。 工程友好性: 原生适配YOLOv5/v8等主流框架,提供标准化train/val/test划分,支持即插即用。 场景适配性强: 标注目标宽高比差异显著(从接近正方形到细长形态),满足不同行业对物体比例的检测需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值