一、“近似”的两种分类
一个复杂的函数,可以通过一系列的“基底函数”(base function)的组合来近似,也就是函数逼近,有两种典型的方法:
- 基于全域的逼近,如傅立叶级数展开;
- 基于子域的分段函数组合,如有限元方法。
第一种函数逼近方式,就是力学分析中经典的瑞利-里兹方法(Rayleigh-Ritz),这种方法的特点是基底函数比较复杂,一般是高阶连续函数,通常仅需采用前面几阶函数组合即可得到较高的逼近精度,比如展开为傅立叶级数。
第二种函数逼近方式就是现代力学分析中的有限元思想,即“分段逼近”,每一个分段函数一般比较简单,采用线性函数或者二次函数即可,但是需要较多的分段才能得到逼近效果,工作量比较大。
关于两种逼近方法更加形象的说明,可以参考曾攀老师书中的一个图片,也就是下面这张图
1.1 利用基于全域的逼近方法求近似解
瑞利-里兹法的核心观点就是选取“试函数”,这个试函数必须首先满足位移边界条件,当然还会带有一些待定系数,然后将其他的变量都用这个“试函数”来表达,通过其他的边界条件或者能量方法(虚功原理或极小势能原理)来求解待定系数。
1.1.1 利用虚功原理求解近似解
简单来说,虚功原理的含义就是如果系统有一个虚位移,那么外力在虚位移上所做的外虚功应该内力所做的内虚功。
内虚功
\begin{equation}
\delta U=\intop_{\varOmega}\sigma_{x}\delta\varepsilon_{x}d\varOmega
\e