《有限元分析基础教程》(曾攀)笔记二-梁单元方程推导(二):简支梁挠曲线近似解...

本文介绍了有限元分析中的两种函数逼近方法:全域逼近(如傅立叶级数)和分段逼近(有限元方法)。通过瑞利-里兹法和虚功原理,详细推导了简支梁挠曲线的近似解,对比了不同试函数(如抛物线和正弦函数)对结果的影响,强调了傅立叶级数在解析解中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、“近似”的两种分类

一个复杂的函数,可以通过一系列的“基底函数”(base function)的组合来近似,也就是函数逼近,有两种典型的方法:

  1. 基于全域的逼近,如傅立叶级数展开;
  2. 基于子域的分段函数组合,如有限元方法。

第一种函数逼近方式,就是力学分析中经典的瑞利-里兹方法(Rayleigh-Ritz),这种方法的特点是基底函数比较复杂,一般是高阶连续函数,通常仅需采用前面几阶函数组合即可得到较高的逼近精度,比如展开为傅立叶级数。

第二种函数逼近方式就是现代力学分析中的有限元思想,即“分段逼近”,每一个分段函数一般比较简单,采用线性函数或者二次函数即可,但是需要较多的分段才能得到逼近效果,工作量比较大。

关于两种逼近方法更加形象的说明,可以参考曾攀老师书中的一个图片,也就是下面这张图

image

 

1.1 利用基于全域的逼近方法求近似解

瑞利-里兹法的核心观点就是选取“试函数”,这个试函数必须首先满足位移边界条件,当然还会带有一些待定系数,然后将其他的变量都用这个“试函数”来表达,通过其他的边界条件或者能量方法(虚功原理或极小势能原理)来求解待定系数。

1.1.1 利用虚功原理求解近似解

简单来说,虚功原理的含义就是如果系统有一个虚位移,那么外力在虚位移上所做的外虚功应该内力所做的内虚功。

内虚功

\begin{equation}
\delta U=\intop_{\varOmega}\sigma_{x}\delta\varepsilon_{x}d\varOmega
\e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值