-
题目描述:
-
有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。
-
输入:
-
输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a1,a2……an的值。
-
输出:
-
输出不同的选择物品的方式的数目。
-
样例输入:
-
3 20 20 20
-
样例输出:
-
3
#include<iostream> using namespace std; int a[21]; int n,ans; void dfs(int i,int sum){ if(sum>40) return; if(sum==40) { ans++; return ; } if(i>=n) return; if(sum<40){ dfs(i+1,sum+a[i]); //选取a[i] dfs(i+1,sum); //不选取a[i] } } int main(){ while(cin>>n){ for(int i=0;i<n;i++) cin>>a[i]; ans=0; dfs(0,0); cout<<ans<<endl; } return 0; }
神奇的这道题正好压中了复试的第三题。