bzoj2561 最小生成树

本文探讨了一道关于最小生成树的算法题目,通过克鲁斯卡尔算法和网络流原理,解决如何使一条特定边既能出现在最小生成树也能出现在最大生成树的问题。

2561: 最小生成树

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 2244  Solved: 1070
[Submit][Status][Discuss]

Description

 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上?

 

Input

   第一行包含用空格隔开的两个整数,分别为N和M;
  接下来M行,每行包含三个正整数u,v和w表示图G存在一条边权为w的边(u,v)。
  最后一行包含用空格隔开的三个整数,分别为u,v,和 L;
  数据保证图中没有自环。
 

Output

 输出一行一个整数表示最少需要删掉的边的数量。

Sample Input

3 2
3 2 1
1 2 3
1 2 2

Sample Output

1

HINT

 

对于20%的数据满足N ≤ 10,M ≤ 20,L ≤ 20;

  对于50%的数据满足N ≤ 300,M ≤ 3000,L ≤ 200;

  对于100%的数据满足N ≤ 20000,M ≤ 200000,L ≤ 20000。

 

Source

2012国家集训队Round 1 day1

分析:老套路,考虑克鲁斯卡尔算法的流程.

         如果(u,v,l)这条边在最小生成树上,那么在加入这条边的时候,u,v一定是不连通的.那么将权值小于l的边给连起来,接下来的任务就是使得删去权值最小的边使得构出的图不连通.显然的最小割,跑一边dinic算法.对于最大生成树也这样做一遍,两次的答案相加就是问题的答案.

         边数组开小了,结果迷之TLE.这种无向边,网络流的题建图要开4倍的边数组!

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int maxn = 400010,inf = 0x7fffffff;

int n,m,u,v,l,head[20010],to[maxn * 3],nextt[maxn * 3],tot = 2,w[maxn * 3],dist[20010],ans;

struct node
{
    int u,v,w;
} e[maxn];

bool cmp(node a,node b)
{
    return a.w < b.w;
}

void add(int x,int y,int z)
{
    w[tot] = z;
    to[tot] = y;
    nextt[tot] = head[x];
    head[x] = tot++;

    w[tot] = 0;
    to[tot] = x;
    nextt[tot] = head[y];
    head[y] = tot++;
}

bool bfs()
{
    memset(dist,-1,sizeof(dist));
    dist[u] = 0;
    queue <int> q;
    q.push(u);
    while (!q.empty())
    {
        int uu = q.front();
        q.pop();
        if (uu == v)
            return true;
        for (int i = head[uu]; i; i = nextt[i])
        {
            int vv = to[i];
            if (w[i] && dist[vv] == -1)
            {
                dist[vv] = dist[uu] + 1;
                q.push(vv);
            }
        }
    }
    if (dist[v] == -1)
        return false;
    return true;
}

int dfs(int x,int flow)
{
    if (x == v)
        return flow;
    int res = 0;
    for (int i = head[x]; i; i = nextt[i])
    {
        int vv = to[i];
        if (w[i] && dist[vv] == dist[x] + 1)
        {
            int temp = dfs(vv,min(flow - res,w[i]));
            w[i] -= temp;
            w[i ^ 1] += temp;
            res += temp;
            if (res == flow)
                return res;
        }
    }
    if (res == 0)
        dist[x] = -1;
    return res;
}

void solve1()
{
    for (int i = 1; i <= m; i++)
    {
        if (e[i].w >= l)
            break;
        add(e[i].u,e[i].v,1);
        add(e[i].v,e[i].u,1);
    }
    while (bfs())
        ans += dfs(u,inf);
}

void solve2()
{
    tot = 2;
    memset(head,0,sizeof(head));
    for (int i = m; i >= 1; i--)
    {
        if (e[i].w <= l)
            break;
        add(e[i].u,e[i].v,1);
        add(e[i].v,e[i].u,1);
    }
    while (bfs())
        ans += dfs(u,inf);
}

int main()
{
    scanf("%d%d",&n,&m);
    for (int i = 1; i <= m; i++)
        scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
    scanf("%d%d%d",&u,&v,&l);
    sort(e + 1,e + 1 + m,cmp);
    solve1();
    solve2();
    printf("%d\n",ans);

    return 0;
}

 

转载于:https://www.cnblogs.com/zbtrs/p/8352440.html

内容概要:本文介绍了基于Matlab代码实现的【EI复现】考虑网络动态重构的分布式电源选址定容优化方法,重点研究在电力系统中结合网络动态重构技术进行分布式电源(如光伏、风电等)的最佳位置选择与容量配置的双层优化模型。该方法综合考虑配电网结构变化与电源布局之间的相互影响,通过优化算法实现系统损耗最小、电压稳定性提升及可再生能源消纳能力增强等多重目标。文中提供了完整的Matlab仿真代码与案例验证,便于复现实验结果并拓展应用于微网、储能配置与配电系统重构等相关领域。; 适合人群:电力系统、电气工程及其自动化等相关专业的研究生、科研人员及从事新能源规划与电网优化工作的工程师;具备一定Matlab编程基础和优化理论背景者更佳。; 使用场景及目标:①用于科研论文复现,特别是EI/SCI级别关于分布式能源优化配置的研究;②支【EI复现】考虑网络动态重构的分布式电源选址定容优化方法(Matlab代码实现)撑毕业设计、课题项目中的电源选址定容建模与仿真;③辅助实际电网规划中对分布式发电接入方案的评估与决策; 阅读建议:建议结合提供的网盘资源下载完整代码与工具包(如YALMIP),按照文档目录顺序逐步学习,注重模型构建思路与代码实现细节的对应关系,并尝试在不同测试系统上调试与扩展功能。
本系统采用SpringBoot与Vue技术架构,实现了完整的影院票务管理解决方案,包含后台数据库及全套可执行代码。该系统在高等院校计算机专业毕业设计评审中获得优异评价,特别适用于正在进行毕业课题研究的学生群体,以及需要提升项目实践能力的开发者。同时也可作为课程结业作业或学期综合训练项目使用。 系统提供完整的技术文档和经过全面测试的源代码,所有功能模块均通过多轮调试验证,保证系统稳定性和可执行性。该解决方案可直接应用于毕业设计答辩环节,其技术架构符合现代企业级开发规范,采用前后端分离模式,后端基于SpringBoot框架实现业务逻辑和数据处理,前端通过Vue.js构建用户交互界面。 系统核心功能涵盖影院管理、影片排期、座位预定、票务销售、用户管理等模块,实现了从影片上架到票务核销的完整业务流程。数据库设计遵循第三范式原则,确保数据一致性和完整性。代码结构采用分层架构设计,包含控制器层、服务层、数据访问层等标准组件,便于后续功能扩展和维护。 该项目不仅提供了可直接部署运行的完整程序,还包含详细的技术实现文档,帮助开发者深入理解系统架构设计理念和具体实现细节。对于计算机专业学生而言,通过研究该项目可以掌握企业级应用开发的全流程,包括需求分析、技术选型、系统设计和测试部署等关键环节。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值