http://acm.hdu.edu.cn/showproblem.php?pid=4609
题意:给你n个数,问任意取三边能够,构成三角形的概率为多少。
思路:使用FFT对所有长度的个数进行卷积(\(C = \{x + y| x \in A, y \in B \} \)),得到所有两边和情况数,再考虑去掉重复的情况。找边并计数的时候再去掉不可能的情况。具体操作看bin神的博客
另FFT还可以用来进行多项式和高精度乘法,又难懂又难用的东西=x=
/** @Date : 2016-12-04-16.31
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/
#include<bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8;
const double PI = acos(-1.0);
struct Complex
{
double a, i;//实部,虚部
Complex(double aa = 0, double ii = 0)
{
a = aa, i = ii;
}
Complex operator +(const Complex &y)
{
return Complex(a + y.a, i + y.i);
}
Complex operator -(const Complex &y)
{
return Complex(a - y.a, i - y.i);
}
Complex operator *(const Complex &y)
{
return Complex(a * y.a - i * y.i, a * y.i + i * y.a);
}
};
void change(Complex y[], int len)//len 必须为2的幂;位置i和二进制反转的位置互换
{
int i, j, k;
for(i = 1, j = len / 2; i < len - 1; i++)
{
if(i < j)
swap(y[i], y[j]);
//交换互为小标反转的元素,i<j交换一次
//i正常++ j左反转类型的+1 始终保持二者反转
k = len / 2;
while(j >= k)
{
j -= k;
k /= 2;
}
if(j < k)
j += k;
}
}
void fft(Complex y[], int len, int on)//on==1时DFT -1时IDFT len必须为2的幂
{
change(y, len);
for(int h = 2; h <= len; h <<= 1)
{
Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
for(int j = 0; j < len; j+=h)
{
Complex w(1, 0);
for(int k = j; k < j + h / 2; k++)
{
Complex u = y[k];
Complex t = w * y[k + h / 2];
y[k] = u + t;
y[k + h / 2] = u - t;
w = w * wn;
}
}
}
if(on == -1)
for(int i = 0; i < len; i++)
y[i].a /= len;
}
Complex x1[4 * N];
int a[N];
LL num[4 * N];
LL sum[4 * N];
int main()
{
int T;
cin >> T;
while(T--)
{
int n;
scanf("%d", &n);
MMF(num);
for(int i = 0; i < n; i++)
{
scanf("%d", a + i);
num[a[i]]++;
}
sort(a, a + n);
int len1 = a[n - 1] + 1;
int len = 1;
while(len < 2 * len1)
len <<= 1;
for(int i = 0; i < len1; i++)
x1[i] = Complex(num[i], 0);
for(int i = len1; i < len; i++)
x1[i] = Complex(0 , 0);
//
fft(x1, len, 1);
for(int i = 0; i < len; i++)
x1[i] = x1[i] * x1[i];
fft(x1, len, -1);
//
for(int i = 0; i < len; i++)
num[i] = (LL)(x1[i].a + 0.5);
len = 2 * a[n - 1];
/
for(int i = 0; i < n; i++)//卷积中同样的数字选取两次
num[a[i] + a[i]]--;
for(int i = 1; i <= len; i++)//卷积中数字选取无顺序关系
num[i] /= 2;
sum[0] = 0;
for(int i = 1; i <= len; i++)//数字出现次数前缀和
{
sum[i] = sum[i - 1] + num[i];
}
LL cnt = 0;
for(int i = 0; i < n; i++)
{
cnt += sum[len] - sum[a[i]];
///
cnt -= (LL)(n - i - 1) * i;
cnt -= (LL)(n - 1) * 1;
cnt -= (LL)(n - i - 1) * (n - i - 2) / 2;
}
printf("%.7lf\n", (double)cnt * 6.0 / n / (n - 1.0) / (n - 2.0));
}
return 0;
}