Problem
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Example
Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Output
15
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 106
ll a[maxn][maxn],sum[maxn];
ll f(ll c[],ll n)
{
ll i,j;
ll b[maxn];
b[0]=-inf;
ll maxx=-inf;
for(i=1;i<=n;i++){
b[i]=max(c[i],b[i-1]+c[i]);
maxx=max(maxx,b[i]);
}
return maxx;
}
int main()
{
ll n,m,i,j,maxx,k;
while(scanf("%lld",&n)!=EOF)
{
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
scanf("%lld",&a[i][j]);
}
}
maxx=-inf;
for(i=1;i<=n;i++){
memset(sum,0,sizeof(sum));
for(j=i;j<=n;j++){
for(k=1;k<=n;k++){
sum[k]+=a[j][k];
}
maxx=max(maxx,f(sum,n));
}
}
printf("%lld\n",maxx);
}
return 0;
}