题目请点我
题解:
接触到的第一到区间更新,须要用到lazy标记。典型的区间着色问题。
lazy标记详情请參考博客:http://ju.outofmemory.cn/entry/99351
简单讲就是被lazy标记的非叶子节点所包括的全部叶子节点具有同样的性质。当更新或查询到该区间时,不再向下递归。仅对当前节点的lazy标记进行改动。
update :
假设当前区间刚好全然在目的区间内:看当前节点是否被标记。若未被标记。或者被标记了可是与要更新类型同样,不再向下更新。仅标记当前节点。若当前节点已经被标记且与要更新类型不同,运行pushdown操作。标记下移,递归进行更新。
query:
假设当前节点区间在目的区间内(事实上一定在。由于题目要求1~N总的价值),若节点被标记,返回segTree[i]*(r+1-l);若当前节点未被标记或者区间不能全然覆盖,递归求解。
代码实现:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#define MAX 100010
#define LCHILD(x) x<<1
#define RCHILD(x) x<<1|1
#define MID(x,y) (x+y)>>1
using namespace std;
int T;
int res;
int N,Q;
int segTree[MAX<<2|1];
void pushdown(int root);
void build(int root,int l,int r);
int query(int a,int b,int l,int r,int root);
void update(int a,int b,int l,int r,int root,int type);
int main()
{
scanf("%d",&T);
for( int t = 1; t <= T; t++ ){
scanf("%d",&N);
scanf("%d",&Q);
build(1,1,N);
while( Q-- ){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
update(a,b,1,N,1,c);
}
int res = query(1,N,1,N,1);
printf("Case %d: The total value of the hook is %d.\n",t,res);
}
return 0;
}
void build(int root,int l,int r){
if( l == r ){
segTree[root] = 1;
return ;
}
int mid = MID(l,r);
build(LCHILD(root),l,mid);
build(RCHILD(root),mid+1,r);
//非叶子节点初始为0。表示不标记
segTree[root] = 0;
}
void update(int a,int b,int l,int r,int root,int type){
//不在当前区间
if( l > b || r < a ){
return ;
}
//更新区间全然在当前区间内或者type同样
if( (l >= a && r <= b) || segTree[root] == type ){
segTree[root] = type;
return ;
}
//当前节点被标记可是type不同
if( segTree[root] != 0 ){
pushdown(root);
}
int mid = MID(l,r);
update(a,b,l,mid,LCHILD(root),type);
update(a,b,mid+1,r,RCHILD(root),type);
return ;
}
int query(int a,int b,int l,int r,int root){
//不在当前区间
if( l > b || r < a ){
return 0;
}
int mid = MID(l,r);
if( l >= a && r <= b ){
if( segTree[root] != 0 ){
//闭区间[l,r]
return segTree[root]*(r+1-l);
}
else{
return query(a,b,l,mid,LCHILD(root))+query(a,b,mid+1,r,RCHILD(root));
}
}
else{
return query(a,b,l,mid,LCHILD(root))+query(a,b,mid+1,r,RCHILD(root));
}
}
void pushdown(int root){
segTree[LCHILD(root)] = segTree[root];
segTree[RCHILD(root)] = segTree[root];
segTree[root] = 0;
return ;
}