Kafka之Purgatory Redesign Proposal (翻译)

本文介绍了一种改进 Kafka 处理延时请求的方法,通过引入层级时间轮与优化清理机制,提高了请求处理效率和 CPU 使用率。详细阐述了现有设计的局限性,提出了基于 Delay Queue 和 Hierarchical Timing Wheel 的新设计方案,旨在实现更快速的请求完成和更少的内存消耗。
摘要由CSDN通过智能技术生成

Purgatory是Kafka server中处理请求时使用的一个重要的数据结构。正好研究ReplicaManager源码的时候发现了这篇文章,顺便翻译下。由于这个proposal里的很多东西需要看源码才能理解得比较清楚,但是代码还是比较多的,所以先大概讲一下其中的一些概念和原理,以便于阅读接下来的文章。

1. purgatory是用于缓存一些 delayed request的。这些请求因为一些条件得不到满足,所以需要先放到purgatory里,等到条件满足了,再从里边移出来。

2. 这些request得到满足的条件分成两种:(1)它需要业务类型的条件,比如fetch的最少byte数目等  (2)超时时限。这两个条件需要对应两个不同类型的缓存,第一个缓存是用一个hashmap实现的,key就是条件,value就是等待这个条件的所有请求的列表(就是文章中的watcher list,每个在等待这个key的请求就是一个watcher);第二个缓存是一个计时器,当request超时以后,它会主动complete这个请求。

3. 第一个hashmap里的key与request是多对多的关系,所以通过一个key找到一个request, 然后complete这个request以后,可以把这个request从对应这个key的watcher list里移除。但是这并不代表这个request就不在第一个缓存里了,因为它可能还在其它key的wather list里,而遍历所有wathers lists是一个开销很大的操作,所以不能每次移除一个元素,都要对这个hashmap检测一遍。所以,需要周期性地清理这个hashmap,就是下面文章中提到的purge操作。0.8.x里的实现是根据当前watcher list总的大小来确定啥时候该purge,但是这个大小并不代表了第一个缓存中的请求的数量,更不代表已实成的请求的数量。而实际应该purge的是已完成的请求的数量。旧的方案对这个问题的处理很不好,所以耗费了很多CPU,也限制了purgatory的吞吐量。新的方案部分解决了这个问题,至少比0.8.x的好很多。

4. 第二个缓存,即超时队列里的元素即使被删除了,也不能直接找到第一个缓存里的对应条目进行删除。所以已经过期的请求也不能及时被从第一个缓存里移除,这也加到对一个缓存清理的必要性。

5. 0.8.x的计时器的实现是用了一个java.util.concurrent.DelayQueue,把每个request做成一个DelayItem放进去。java的DelayQueue的实现是用的一个优先级队列,这个队列的入队和删除的时间复杂度是O(logn)。所以,如果DelayQueue很大,那么每次入队和删除的开销都会比较高。而新的实现通过一个timing wheel和基于双端链表的桶的实现,把插入和删除请求到计时器的操作的时间复杂度降到了O(1),这也降低了对CPU的使用。

Purgatory Redesign Proposal

Introduction

简介

Kafka implements several request types that cannot immediately be answered with a response. Examples:

  • A produce request with acks=all cannot be considered complete until all replicas have acknowledged the write and we can guarantee it will not be lost if the leader fails.
  • A fetch request with min.bytes=1 won't be answered until there is at least one new byte of data for the consumer to consume. This allows a "long poll" so that the consumer need not busy wait checking for new data to arrive.

Kafka实现了好几种不能被立即响应的请求类型, 比如:

  • 一个ack=all的produce request在所有副本都确认写入之前是不能被认为已经完成了的,因为我们不能保证如果leader挂掉的话它不会丢失。
  • 一个min.bytes=1的fetch request在至少有1bytes的数据可以被消费者消费之前,是不能给出回应的。这使得“长时抓取”可以实现,这样consumer就不用频率检查是否有新的数据到来。

These requests are considered complete when either (a) the criteria they requested is complete or (b) some timeout occurs.

一个请求只有符合以下任一条件时才会被认是已经完成了(a)它们需要条件得到了满足(b)发生了超时

We intend to expand the use of this delayed request facility for various additional purposes including partition assignment and potentially quota enforcement.

The number of these asynchronous operations in flight at any time scales with the number of connections, which for Kafka is often tens of thousands.

A naive implementation of these would simply block the thread on the criteria, but this would not scale to the high number of in flight requests Kafka has.

我们准备把delayed request库用于其它的一些目的,比如分区分配(partition assignment)以及可能用于配额控制(quota enforcement)功能。

在任何时刻正在执行中的这种异步操作的数量跟连接(connections)的数量一起增长,对于Kafka来说这种连接经常是万级别的。(译注:是说随着连接数的增加,正在执行的这种异步操作的数量也会增加)。

对于这种问题的一个简单的实现方案是把线程阻塞在请求完成的条件上,但是对于Kafka这种拥有非常多的请求(指前边提到的这种delayed request)的情况,这种解决方案不具有扩展性。

The current approach uses a data structure called the "request purgatory". The purgatory holds any request that hasn't yet met its criteria to succeed but also hasn't yet resulted in an error. This structure holds onto these uncompleted requests and allows non-blocking event-based generation of the responses. This approach is obviously better than having a thread per in-flight request but our implementation of the data structure that accomplishes this has a number of deficiencies. The goal of this proposal is to improve the efficiency of this data structure.

当前Kafka的做法是使用一个叫做“request purgatory"的数据结构。这个purgatory持有还没有达到完成条件但也没有发生错误的请求。这个数据结构持有这些未完成的请求,并且允许以"非阻塞"的"事件驱动"的方式生成响应。这种做法很明显比为每个正在等待的请求创建一个线程好得多,但是我们对于这个数据结构的实现有一些缺陷。这个提议(proposal)的目的。

Current Design

当前的设计

The request purgatory consists of a timeout timer and a hash map of watcher lists for event driven processing. A request is put into a purgatory when it is not immediately satisfiable because of unmet conditions. A request in the purgatory is completed later when the conditions are met or is forced to be completed (timeout) when it passed beyond the time specified in the timeout parameter of the request. Currently (0.8.x) it uses Java DelayQueue to implement the timer.

当前的request purgatory 包括一个超时计时器以及一个以watchers列表为value的哈希表,这个哈希表用于事件驱动的处理。当一个请求不能立即满足时,它就被放到一个purgatory。对于一个在purgatory中的请求,当它的需求被满足或者它因为超过了这个请求中指定的超时时限而被强制完成的时候,它就会被完成。当前的版本(0.8.x)使用一个Java的DelayedQueue来实现这个计时器。

 

When a request is completed, the request is not deleted from the timer or watcher lists immediately. Instead, completed requests are deleted as they were found during condition checking. When the deletion does not keep up, the server may exhaust JVM heap and cause OutOfMemoryError. To alleviate the situation, the reaper thread purges completed requests from the purgatory when the number of requests in the purgatory (including both pending or completed requests) exceeds the configured number. The purge operation scans the timer queue and all watcher lists to find completed requests and deletes them.

当一个请求完成以后,它没有被立即从计时器或者watchers列表中删除。而取代之后的是,已经完成的请求只有在条件检查的时候被发现后,才会被删除。当删除的速度跟不的时候,服务器可能会耗尽JVM堆,引发OutOfMemoryError。为了避免这种情况,在purgatory中的请求数目(包括在等待的以及完成的请求)达到一个指定的值时,收割者线程就会把已经完成的请求从purgatory里清理。清理操作会扫描计时器队列以及所有watcher列表来找到已经完成的请求,然后删除它们。

By setting this configuration parameter low, the server can virtually avoid the memory problem. However, the server must pay a significant performance penalty if it scans all lists too frequently.

 通过把这个配置参数设低,服务器可以差不多避免内存问题。但是,如果服务器扫描这些列表太频繁的话,会遭受显著的性能惩罚。

New Design

The goal of the new design is to allow immediate deletion of a completed request and reduce the load of expensive purge process significantly. It requires cross referencing of entries in the timer and the requests. Also it is strongly desired to have O(1) insert/delete cost since insert/delete operation happens for each request/completion.

To satisfy these requirements, we propose a new purgatory implementation based on Hierarchical Timing Wheels.

新设计

新设计的目标是允许把已完成的任务立即删除,并且显著减轻清理线程的负载。这需要对计时器的条目(entries in the timer)和请求进行交叉引用。并且,对于插入和删除的复杂度为O(1)存在着强烈的需求,因为对于生个请求/完成都会有插入/删除的操作。

为了实现上面的要求,我们提议一个基于Hierarchical Timing Wheels 的新purgatory的实现。

Hierarchical Timing Wheel

层级形式的时间轮

A simple timing wheel is a circular list of buckets of timer tasks. Let  u be the time unit. A timing wheel with size  n has  n buckets and can hold timer tasks in  n * u time interval. Each bucket holds timer tasks that fall into the corresponding time range. At the beginning, the first bucket holds tasks for  [0, u), the second bucket holds tasks for  [u, 2u), …, the n-th bucket for  [u * (n -1), u * n). Every interval of time unit  u, the timer ticks and moved to the next bucket then expire all timer tasks in it. So, the timer never insert a task into the bucket for the current time since it is already expired. The timer immediately runs the expired task. The emptied bucket is then available for the next round, so if the current bucket is for the time  t, it becomes the bucket for  [t + u * n, t + (n + 1) * u) after a tick. A timing wheel has O(1) cost for insert/delete (start-timer/stop-timer) whereas priority queue based timers, such as  java.util.concurrent.DelayQueue and  java.util.Timer, have O(log n) insert/delete cost.
 一个简单的时间轮是一个定时任务(timer task)的循环链表。设u是时间单元。一个大小为n的时间轮有n个桶,因此可以持有 n * u时间间隔的计时任务。生个桶持有落入相关时间段的计时任务。在开始的时候,第一个桶持有 [0, u)的任务,第二个桶持有 [u, 2u),的任务,..., 第n个桶持有 [u * (n -1), u * n)的任务。每个 u的时间间隔,计时器走一格,并且移动到下个桶,因此使得所有计时任务过期(expire all timer tasks。译注:是指刚走过的那一格里的所有任务过期)。因此,计时器从不把任务加到当前时间的桶里,因为它已经过期了(译注:是指如果一个任务的到期时间是在当前时间的桶里,计时器就不会把它进去,因为这个任务已经被认为是过期的了。这个是对当前的桶的含义的一个说明)。计时器会立即运行过期的任务。这个空的桶在下一轮的时候就可以被使用了,所以如果当前桶标识 t时间,那么在计时器走一格过后,它就变成了 [t + u * n, t + (n + 1) * u)的桶。时间轮对于插入/删除操作(启动计时器/停止计时器)有O(1)的时间复杂度,而之前的基于优先队列的计时器,例如java.util.concurrent.DelayedQueue和java.util.Timer对于插入/删除操作有O(logn)的开销。
 
 
A major drawback of a simple timing wheel is that it assumes that a timer request is within the time interval of  n * u from the current time. If a timer request is out of this interval, it is an overflow. A hierarchical timing wheel deals with such overflows. It is a hierarchically organized timing wheels. The lowest level has the finest time resolution. As moving up the hierarchy, time resolutions become coarser. If the resolution of a wheel at one level is  u and the size is  n, the resolution of the next level should be  n * u.  At each level overflows are delegated to the wheel in one level higher. When the wheel in the higher level ticks, it reinsert timer tasks to the lower level. An overflow wheel can be created on-demand. When a bucket in an overflow bucket expires, all tasks in it are reinserted into the timer recursively. The tasks are then moved to the finer grain wheels or be executed. The insert (start-timer) cost is O(m) where  m is the number of wheels, which is usually very small compared to the number of requests in the system, and the delete (stop-timer) cost is still O(1).
 简单的计时轮的一个主要缺点是它假设一个计时请求在从当前时间到 n * u 的时间段内。如果一个计时请求在这个时间段以外,它就会溢出。一个层级结构的时间轮可以处理这种溢出。最低的层级有最细的时间粒度。随着层级的上升,时间粒度变得更粗。如果时间轮在一个层级的粒度为   u 并且大小为 n,下一个级别的粒度就应该是 n * u。每个级别的溢出被代理给上一个级别。当高级别的时间轮走动一格,它把计时任务重新插入到比它低一级的级别。一个溢出轮(overflow wheel)可以按需创建。当一个溢出轮的桶超时的时候,这个桶的所有任务会被重新加入计时器。这些任务会被移动到合适粒度的轮或者被执行。插入(启动计时器)的时间复杂度是O(m), m 是轮的总数,通常会比系统中请求的总数小得多,删除(停止计时)的开销仍然是O(1)。
 

Doubly Linked List for Buckets in Timing Wheels

时间轮中用于桶的双端链表

(译注:意思是Timing Wheels中的桶是用双端链表实现的)

In this design, we propose to use our own implementation of doubly linked list for the buckets in a timing wheel. The advantage of doubly linked list that it allows O(1) insert/delete of a list item if we have access link cells in a list.
A timer task saves a link cell in itself when enqueued to a timer queue. When a task is completed or canceled, the list is updated using the link cell saved in the task itself.
在这个设计中,我们提出了一种用双端链表来实现时间轮中的桶的方案。双端链表的好处是如果我们可以访问表中的元素,就可以O(1)的时间复杂度来插入/删除它(译注:意思是,如果我们有对这个list的entry的引用,那么双端链表可以实现O(1)的插入和删除操作,这里主要是跟单向链表比较)。
当把一个定时任务(timer task)加入到定时队列(timer queue)的时候,这个定时任务保存了对它所在的链表元素的引用。当这个任务被完成或者取消,这个timer queue就会被用这个保存在timer task中的链接更新。
(译注:这一段是讲怎么用双端链表实现O(1)的插入和删除。其实双端链表的优势主要是删除比较方便。每个timer task在放入timer queue的时候,也就被加入了一个双端链表,这个timer task会保存一个到链表中它所在的entry的引用。这引,当通过event触发找到了一个timer task,把它完成,就可以通过之前的引用找到它在链表中的元素,从而以O(1)的复杂度把它从链表移除。)
 

Driving Clock using DelayQueue

使用DelayQueue驱动时钟

A simple implementation may use a thread that wakes up every unit time and do the ticking, which checks if there is any task in the bucket. This can be wasteful if requests are sparse. We want the thread to wake up only when when there is a non-empty bucket to expire. We will do so by using java.util.concurrent.DelayQueue similarly to the current implementation, but we will enqueue task buckets instead of individual tasks. This design has a performance advantage. The number of items in DelayQueue is capped by the number of buckets, which is usually much smaller than the number of tasks, thus the number of offer/poll operations to the priority queue inside DelayQueue will be significantly smaller.

一个简单的实现是使用一个线程,这个线程每个时间单位被唤醒,然后驱动时钟走一格,来检查是否在这个桶里边有任务。如果请求很稀疏,那么这样做挺浪费。我们想要的是只有在一个非空的桶要过期的时候,这个线程才会醒来。我们想要使用java.util.concurrent.DelayedQueue,很像当前的实现,但是我们加入queue的不是单个的任务而是桶。这样的设计在性能上有优势。DelayQueue里的元素的数量的上限就是桶的ovtr量,通常比起任务的数量,桶的数量要小得多,因此对于DelayQueue里的优先级队列的offer/poll操作会明显得小得多。

Purge of Watcher Lists

清理观察者列表

In the current implementation, the purge operation of watcher lists is triggered by the total size if the watcher lists. The problem is that the watcher lists may exceed the threshold even when there isn't many requests to purge. When this happens it increases the CPU load a lot. Ideally, the purge operation should be triggered by the number of completed requests the watcher lists.

在当前的实现中,对于watchers list的清理是被watchers list的大小触发。问题是,即使没有什么任务需要清理,watcher list的大小也可能会超过这个阀值。当这种情况发生,CPU负载就会增加很多。理想的情况是,清理操作是被watchers list中已经完成的请求的数目触发。

In the new design, a completed request is removed from the timer queue immediately with O(1) cost. It means that the number of requests in the timer queue is the number of pending requests exactly at any time. So, if we know the total number of distinct requests in the purgatory, which includes the sum of the number of pending request and the numbers completed but still watched requests, we can avoid unnecessary purge operations. It is not trivial to keep track of the exact number of distinct requests in the purgatory because a request may or my not be watched. In the new design, we estimate the total number of requests in the purgatory rather than trying to maintain the exactly number.

在新的设计中,一个已经完成的请求会被以O(1)的开销从计时器队列(timer queue)中被删除。这意味着计时器队列的请求的数目在任何时间点就是在等待的请求的数目。因此,如果我们知道这个purgatory中的不同请求类型请求的总数,也就是所有在等待的请求的总数以及虽然已经完成了但还在watchers lists里的请求数目,我们就可以避免没必要的清理操作。追踪purgatory中不同请求的确切数目不是一个简单的事,因为一个请求可能被watch,也可能没有。在这个新设计中,我们对purgatory中的请求的总数进行估计而不是试图维护一个确切的值。

 

The estimated number of requests are maintained as follows. The estimated total number of requests, E, is incremented whenever a new request is watched. Before starting the purge operation, we reset the estimated total number of requests to the size of timer queue. If no requests are added to the purgatory during purge, E is the correct number of requests after purge. If some requests are added to the purgatory during purge, E is incremented to E + the number of newly watched requests. This may be an overestimation because it is possible that some of the new requests are completed and remove from the watcher lists during the purge operation. We expect the chance of overestimation and an amount of overestimation are small.

 

请求总数的估计值被以下面的方式维护。请求总数的估计值, E ,每当一个新的请求被watch就会加1. 在开始清理操作之前,我们把请求总数的估计值重置为timer queue的大小。如果在清理过程中没有新的请求被加到purgatory, E就是清理之后留下来的消息的总数。如果在清理过程中有新的请求被加到了purgatory, E就增加到了 E + 新被watch的请求数量。这可能会是一个高估了的值因为在清理操作中可能会有新的请求被完成并且从watcher list里移除。我们希望高估的概率以及被高估的数目会比较小。
 

Parameters

参数

  • the tick size (the minimum time unit)
  • the wheel size (the number of buckets per wheel)
  • 一格的大小(也就是最小的时间单位)
  • 轮的大小(每个轮的桶的数量)

BenchMark

We compared the enqueue performance of two purgatory implementation, the current implementation and the proposed new implementation. This is a micro benchmark. It measures the purgatory enqueue performance. The purgatory was separated from the rest of the system and also uses a fake request which does nothing useful. So, the throughput of the purgatory in a real system may be much lower than the number shown by the test. 

我们比较了这两种purgatory实现的入队列(enqueue)性能,当前的实现和被提议的新的实现。这是一个小的benchmark。它度量的purgatory的入队列性能。purgatory被从系统的其它部分剥离出来,并且使用了一个捏造的请求(fake request), 这个请求啥都不做。所以实际系统中这个purgatory的吞吐量会比benchmark里显示的值低很多。 

In the test, the intervals of the requests are assumed to follow the exponential distribution. Each request takes a time drawn from a log-normal distribution. By adjusting the shape of the log-normal distribution, we can test different timeout rate.

在测试里,请求的间隔被推测为符合指数分布(follow the exponential distribution). 每个请求的时间(译注:这里应该是完成请求花费的时间,也就是从进入purgatory到complete的时间)取自一个对数正态分布(log-normal distribution)。通过调整这个对数正态分布的形状,我们可以测试不同的超时比率(timeout rate)。

The tick size is 1ms and the wheel size is 20. The timeout was set to 200ms. The data size of a request was 100 bytes. For a low timeout rate case, we chose 75percentile = 60ms and 50percentile = 20. And for a high timeout rate case, we chose 75percentile = 400ms and 50percentile = 200ms. Total 1 million requests are enqueued in each run.

一个格(tick size)是一毫秒,轮的大小是20。超时时间是200ms。每个请求的数据大小是100字节。对于低超时比率的情况,我们选择百分位数为75的请求的完成时间是60ms, 百分位数50的完成时间是20ms(we chose 75percentile = 60ms and 50percentile = 20)。对于高超时比率的情况,我们选择75percentile = 400ms以及50percentile = 200ms。每一轮中总共有100万个请求被加入队列。

Requests are actively completed by a separate thread. Requests that are supposed to be completed before timeout are enqueued to another DelayQueue. And a separate thread keeps polling and completes them. There is no guarantee of accuracy in terms of actual completion time.

请求被不断的用另一个线程完成。应该在超时之前完成的请求被加入到另一个DelayQueue, 一个单独的线程不断地从这个队列里poll请求并且完成它们。并没有对请求实际完成的时间有准确地保证。(译注:这一段是讲在benchmark中是怎么样完成(complete)这些请求的, 即用不会timeout的请求被放到一个DelayQueue里,然后有一个程线不停地从里边拉取请求,然后完成它们。但是前边讲过DelayQueue的poll的时间复杂度为O(logn),所以这种方式本身会不会增加cpu load呢?尤其考虑到实际complete请求的时候,请求是从hashmap里获取的,时间复杂度要低很多。)

The JVM heap size is set to 200m to reproduce a memory tight situation.

JVM的堆大小被设成200m来模拟一个内存紧张的场景。

The result shows a dramatic difference in a high enqueue rate area. As the target rate increases, both implementations keep up with the requests initially. However, in low timeout scenario the old implementation was saturated around 40000 RPS (request per second), whereas the proposed implementation didn't show any significant performance degradation, and in high timeout scenario the old implementation was saturated around 25000 RPS, whereas the proposed implementation was saturated 105000 RPS in this benchmark.

结果显示在高入队率的情况下这两种实现有巨大的差异。随着目标速率的增加,两种实现在开始时都能跟得上请求被始化的速度。但是,在低超时率的场景下,旧的实现在大概40000RPS(每秒请求数 request per second)下达到饱合,但是新提出来的实现方案并没有显示出任何明显的性能下降。而且,在高超时率的场景下,旧的实现在2500RPS时就饱合了,但是新提出的这种实现在105000RPS时候才达到了饱合。(译注:看来减少了插入和删除timer task的时间复杂度,加上更高效的purge,使得请求进出purgatory的性能大大提高了。但是不是所有的request都是会被delay的,而且delayed operation中也有是来自于其它副本的replica请求,所以并不代表Kafka Server的RPS)。

CPU usage is significantly better in the new implementation.

新的实现在CPU使用率上明显要好。

Finally, we measured total GC time (milliseconds) for ParNew collection and CMS collection. There isn't much difference in the old implementation and the new implementation in the region of enqueue rate that the old implementation can sustain.

最后,我们测量了用ParNew收集器和CMS收集器时的GC时间(译注:新生代用ParNew, 老年代用CMS)。在旧的实现可以承受的入队列速度的情况下,两种实现并没有什么区别。

 

 

Summary

 

In the new design, we use Hierarchical Timing Wheels for the timeout timer and DelayQueue of timer buckets to advance the clock on demand. Completed requests are removed from the timer queue immediately with O(1) cost. The buckets remain in the delay queue, however, the number of buckets is bounded. And, in a healthy system, most of the requests are satisfied before timeout, and many of the buckets become empty before pulled out of the delay queue. Thus, the timer should rarely have the buckets of the lower interval. The advantage of this design is that the number of requests in the timer queue is the number of pending requests exactly at any time. This allows us to estimate the number of requests need to be purged. We can avoid unnecessary purge operation of the watcher lists. As the result we achieve a higher scalability in terms of request rate with much better CPU usage.

在新的设计中,我们使用了层级状时间轮(Hierarchical Timing Wheels)来做超时计时器,并且使用以计时桶(timer bucket)为元素的DelayQueue来按需驱动时钟。已经完成的请求被以O(1)的开销从时间队列里移除。桶仍然在delay queue里,但是桶的总数是有限的。并且,在一个健康的系统里,大多数请求都在超时之前被完成了,并且大多数桶在被从delay queue里pull出来之前就已经变空了。因此,计时器并不会很频繁地获取桶。这种设计的一个优势在于在任何时刻,在timer queue里的请求的总数就是当前在等待的请求的总数。这使得我们可以估计需要被清理的请求数量。我们因此可以避免不必要的对watcher list的清理动作。结果,我们实现了对于请求数量的更好的扩展性以及更好的CPU使用率。
 
 
 

转载于:https://www.cnblogs.com/devos/p/5060271.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值