python小白-day4递归和算法基础

递归&算法基础

一、递归

递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。

1
2
3
4
5
6
7
8
def calc(n):
     print (n)
     if n / 2 > 1 :
         ret = calc(n / 2 )
         print (ret)
     print ( 'N' ,n)
     return n
calc( 10 )

866894-20160202211931054-1510239421.png

二、二分法

主要使用折半查找算法和利用递归函数来实现。因为每次取中间数字后,都会产生左右两个数组,
需要使用队列把数组存起来,然后输入递归函数内计算中间数字。递归函数终止条件是:1)中间数字
与左边最小的数字相邻;2)中间数字与右边最大的数字相邻。

代码实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
def binary_search(data_source,find_num):
     mid = int ( len (data_source) / 2 )
     if len (data_source) > 1 :
         if data_source[mid] > find_num:
             binary_search(data_source[:mid],find_num)
             print ( 'data in left of [%s]' % data_source[mid])
         elif data_source[mid] < find_num:
             binary_search(data_source[mid:],find_num)
             print ( 'data in right of [%s]' % data_source[mid])
         else :
             print ( 'found' ,data_source[mid])
     else :
         print ( 'cannot found' )
if __name__ = = '__main__' :
     data = list ( range ( 1 , 600000 ))
     binary_search(data, 75000 )

866894-20160202211931694-1732534348.png

三、用递归实现斐波那契数列

1
2
3
4
5
6
7
8
def fun(arg0,arg1,stop):
     if arg0 = = 0 :
         print (arg0,arg1)
     arg2 = arg0 + arg1
     if arg2 < stop :
         print (arg2)
         fun(arg1,arg2,stop)
fun( 0 , 1 , 1000 )

866894-20160202211932616-860131683.png

四、二维数组转换

需求:生成一个4*4的二维数组并将其顺时针旋转90度

核心思想:数组下标的对应关系可以一一对应转换。

1
2
3
4
5
6
7
8
9
10
11
data = [[col for col in range ( 4 )] for row in range ( 4 )]
for i in data:
     print (i)
for r_index,row in enumerate (data):
     for c_index in range (r_index, len (row)):
         tmp = data[c_index][r_index]
         data[c_index][r_index] = row[c_index]
         data[r_index][c_index] = tmp
print ( '--------------------' )
for i in data:
     print (i)

866894-20160202211933163-836334712.png

五、冒泡排序

1
2
3
4
5
6
7
8
9
10
#!/usr/bin/env python
data = [ 10 , 4 , 33 , 21 , 54 , 3 , 8 , 11 , 5 , 22 , 2 , 1 , 17 , 13 , 6 ]
for i in range ( len (data)):
     for j in range ( len (data) - 1 - i):
         if data[j] > data[j + 1 ]:
             tmp = data[j + 1 ]
             data[j + 1 ] = data[j] 
             data[j] = tmp
             #data[j],data[j+1] = data[j+1],data[j] #这种方式也可以
     print (data)

866894-20160202211933585-1520136547.png

六、时间复杂度

(1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
(2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时, T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O(f(n)),O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
 
指数时间
指的是一个问题求解所需要的 计算时间 m( n),依输入数据的大小 n而呈 指数成长(即输入数据的数量依 线性成长,所花的时间将会以指数成长)
1
2
3
4
5
for (i = 1 ; i< = n; i + + )
        x + + ;
for (i = 1 ; i< = n; i + + )
       for (j = 1 ; j< = n; j + + )
           x + + ;

第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

常数时间

 

若对于一个算法,T(n)的上界与输入大小无关,则称其具有常数时间,记作O(1)时间。一个例子是访问数组中的单个元素,因为访问它只需要一条指令。但是,找到无序数组中的最小元素则不是,因为这需要遍历所有元素来找出最小值。这是一项线性时间的操作,或称O(n)时间。但如果预先知道元素的数量并假设数量保持不变,则该操作也可被称为具有常数时间。

 

对数时间 

若算法的T(n) = O(log n),则称其具有对数时间

常见的具有对数时间的算法有二叉树的相关操作和二分搜索

对数时间的算法是非常有效的,因为每增加一个输入,其所需要的额外计算时间会变小。

递归地将字符串砍半并且输出是这个类别函数的一个简单例子。它需要O(log n)的时间因为每次输出之前我们都将字符串砍半。 这意味着,如果我们想增加输出的次数,我们需要将字符串长度加倍。

 

线性时间 

如果一个算法的时间复杂度为O(n),则称这个算法具有线性时间,或O(n)时间。非正式地说,这意味着对于足够大的输入,运行时间增加的大小与输入成线性关系。例如,一个计算列表所有元素的和的程序,需要的时间与列表的长度成正比。





转载于:https://www.cnblogs.com/hetan/p/5178554.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值