bzoj5210 最大连通子块和 动态 DP + 堆

题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=5210

题解

\(dp[x][0]\) 表示以 \(x\) 为根的子树中的包含 \(x\) 的连通块的点权和最大值,\(dp[x][1]\)\(x\) 的所有孩子中的子树的连通块点权和最大值。

于是有这样的式子:
\[ dp[x][0] = \max(w_x+\sum_{y\in child_x} dp[y][0], 0)\\dp[x][1] = \max_{y\in child_x} \max(dp[y][0], dp[y][1]) \]
(其实似乎把 \(dp[x][1]\) 算上 \(dp[x][0]\) 的内容也没什么问题,但是我一开始就这样想的不想改了)

现在把这个 \(dp\) 动态化。令树剖以后,\(x\) 的重儿子为 \(son_x\)\(x\) 的轻儿子的集合为 \(light_x\)。令 \(h[x][0] = \sum\limits_{y \in light_x} dp[y][0]\)\(h[x][1] = \max\limits_{y\in light_x} max(dp[y][0], dp[y][1])\)

于是上面的方程可以改写为
\[ dp[x][0] = \max(w_x+h[x][0] + dp[son_x][0], 0)\\dp[x][1] = \max(h[x][1], dp[son_x][1], dp[son_x][0]) \]
于是矩阵(矩乘是把乘法看成加法,加法看成取 \(\max\))就长这样:
\[ \begin{bmatrix}h[x][0] + w_x & -\infty & 0\\ 0 & 0 & h[x][1] \\ -\infty & -\infty & 0\end{bmatrix} \times \begin{bmatrix} dp[son_x][0] \\ dp[son_x][1] \\ 0 \end{bmatrix} = \begin{bmatrix} dp[x][0] \\ dp[x][1] \\ 0 \end{bmatrix} \]
然后就套一个动态 DP 的板子就可以了。


有一个需要注意的地方就是因为 \(dp[x][1]\) 是取 \(\max\) 的,所以在更新 \(dp[x][1]\) 的时候需要用一个可删除堆来维护最大值。

昨天这道题因为一个 ll 没有写调了几个小时。


单次询问是 \(O(\log n)\) 的,单次修改是 \(O(\log^2 n)\)

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back

template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}

typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;

template<typename I> inline void read(I &x) {
    int f = 0, c;
    while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
    x = c & 15;
    while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
    f ? x = -x : 0;
}

#define lc o << 1
#define rc o << 1 | 1

const int N = 200000 + 7;
const ll INF = 0x3f3f3f3f3f3f3f3f;

int n, m, dfc;
int a[N];
int dep[N], f[N], siz[N], son[N], dfn[N], pre[N], top[N], bot[N];
ll dp[N][2], h[N][2], hh[N][2];

struct Heap {
    std::priority_queue<ll> q, p;
    inline void sync() { while (!q.empty() && !p.empty() && q.top() == p.top()) q.pop(), p.pop(); }
    inline void push(ll x) { q.push(x); sync(); }
    inline void del(ll x) { p.push(x), sync(); }
    inline ll top() { sync(); return q.top(); }
    inline bool empty() { sync(); return q.empty(); }
    inline int size() { sync(); return q.size() - p.size·(); }
} q[N];

struct Edge { int to, ne; } g[N << 1]; int head[N], tot;
inline void addedge(int x, int y) { g[++tot].to = y, g[tot].ne = head[x], head[x] = tot; }
inline void adde(int x, int y) { addedge(x, y), addedge(y, x); }

struct Matrix {
    ll a[3][3];
    inline Matrix() { memset(a, 0, sizeof(a)); }
    inline Matrix operator * (const Matrix &b) {
        Matrix c;
        c.a[0][0] = std::max(std::max(a[0][0] + b.a[0][0], a[0][1] + b.a[1][0]), a[0][2] + b.a[2][0]);
        c.a[0][1] = std::max(std::max(a[0][0] + b.a[0][1], a[0][1] + b.a[1][1]), a[0][2] + b.a[2][1]);
        c.a[0][2] = std::max(std::max(a[0][0] + b.a[0][2], a[0][1] + b.a[1][2]), a[0][2] + b.a[2][2]);
        c.a[1][0] = std::max(std::max(a[1][0] + b.a[0][0], a[1][1] + b.a[1][0]), a[1][2] + b.a[2][0]);
        c.a[1][1] = std::max(std::max(a[1][0] + b.a[0][1], a[1][1] + b.a[1][1]), a[1][2] + b.a[2][1]);
        c.a[1][2] = std::max(std::max(a[1][0] + b.a[0][2], a[1][1] + b.a[1][2]), a[1][2] + b.a[2][2]);
        c.a[2][0] = std::max(std::max(a[2][0] + b.a[0][0], a[2][1] + b.a[1][0]), a[2][2] + b.a[2][0]);
        c.a[2][1] = std::max(std::max(a[2][0] + b.a[0][1], a[2][1] + b.a[1][1]), a[2][2] + b.a[2][1]);
        c.a[2][2] = std::max(std::max(a[2][0] + b.a[0][2], a[2][1] + b.a[1][2]), a[2][2] + b.a[2][2]);
        return c;
    }
} t[N << 2];

inline void dfs1(int x, int fa = 0) {
    dep[x] = dep[fa] + 1, f[x] = fa, siz[x] = 1;
    for fec(i, x, y) if (y != fa) dfs1(y, x), siz[x] += siz[y], siz[y] > siz[son[x]] && (son[x] = y);
}
inline void dfs2(int x, int pa) {
    top[x] = pa, dfn[x] = ++dfc, pre[dfc] = x;
    if (!son[x]) return (void)(bot[x] = x);
    dfs2(son[x], pa), bot[x] = bot[son[x]];
    for fec(i, x, y) if (y != f[x] && y != son[x]) dfs2(y, y);
}
inline void dfs3(int x, int fa = 0) {
    dp[x][0] = a[x];
    for fec(i, x, y) if (y != fa) {
        dfs3(y, x);
        dp[x][0] += dp[y][0];
        smax(dp[x][1], std::max(dp[y][1], dp[y][0]));
        if (y != son[x]) h[x][0] += dp[y][0], smax(h[x][1], std::max(dp[y][1], dp[y][0])), q[x].push(std::max(dp[y][1], dp[y][0]));
    }
    smax(dp[x][0], 0);
}

inline void build(int o, int L, int R) {
    if (L == R) {
        int x = pre[L];
        t[o].a[0][0] = h[x][0] + a[x], t[o].a[0][1] = -INF, t[o].a[0][2] = 0;
        t[o].a[1][0] = 0, t[o].a[1][1] = 0, t[o].a[1][2] = h[x][1];
        t[o].a[2][0] = -INF, t[o].a[2][1] = -INF, t[o].a[2][2] = 0;
        return;
    }
    int M = (L + R) >> 1;
    build(lc, L, M), build(rc, M + 1, R);
    t[o] = t[lc] * t[rc];
}
inline void qadd(int o, int L, int R, int x) {
    if (L == R) {
        int x = pre[L];
        t[o].a[0][0] = h[x][0] + a[x], t[o].a[0][1] = -INF, t[o].a[0][2] = 0;
        t[o].a[1][0] = 0, t[o].a[1][1] = 0, t[o].a[1][2] = h[x][1];
        t[o].a[2][0] = -INF, t[o].a[2][1] = -INF, t[o].a[2][2] = 0;
        return;
    }
    int M = (L + R) >> 1;
    if (x <= M) qadd(lc, L, M, x);
    else qadd(rc, M + 1, R, x);
    t[o] = t[lc] * t[rc];
}
inline Matrix qsum(int o, int L, int R, int l, int r) {
    if (l <= L && R <= r) return t[o];
    int M = (L + R) >> 1;
    if (r <= M) return qsum(lc, L, M, l, r);
    if (l > M) return qsum(rc, M + 1, R, l, r);
    return qsum(lc, L, M, l, r) * qsum(rc, M + 1, R, l, r);
}

inline Matrix qry(int x) { return qsum(1, 1, n, dfn[x], dfn[bot[x]]) * Matrix(); }
inline void upd(int x, int k) {
    a[x] = k;
    while (top[x] != 1) {
        Matrix tmp1 = qry(top[x]);
        qadd(1, 1, n, dfn[x]);
        Matrix tmp2 = qry(top[x]);
        int fa = f[top[x]];
        h[fa][0] += tmp2.a[0][0] - tmp1.a[0][0];
        q[fa].del(std::max(tmp1.a[0][0], tmp1.a[1][0])), q[fa].push(std::max(tmp2.a[0][0], tmp2.a[1][0])), h[fa][1] = q[fa].top();
        x = fa;
    }
    qadd(1, 1, n, dfn[x]);
}

inline void work() {
    dfs1(1), dfs2(1, 1), dfs3(1), build(1, 1, n);
    Matrix tmp;
    while (m--) {
        static char opt[5];
        int x, y;
        scanf("%s", opt);
        if (*opt == 'Q') read(x), tmp = qry(x), printf("%lld\n", std::max(tmp.a[0][0], tmp.a[1][0]));
        else read(x), read(y), upd(x, y);
    }
}

inline void init() {
    read(n), read(m);
    for (int i = 1; i <= n; ++i) read(a[i]);
    int x, y;
    for (int i = 1; i < n; ++i) read(x), read(y), adde(x, y);
}

int main() {
#ifdef hzhkk
    freopen("hkk.in", "r", stdin);
#endif
    init();
    work();
    fclose(stdin), fclose(stdout);
    return 0;
}

转载于:https://www.cnblogs.com/hankeke/p/bzoj5210.html

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值