链接:https://ac.nowcoder.com/acm/contest/553/C
来源:牛客网
题目描述
Chino的数学很差,因此Cocoa非常担心。今天,Cocoa准备教Chino和排队有关的问题。
我们总是会学各种排列组合的问题,那些题目大多数都是套路。而Cocoa不喜欢套路。
通常来说,每个人在排队的时候都会对前一个人有所意见,而如果他们排在第一个,也会颇有微词。因此,排一个尽可能让更多人满意的队伍是一件难事。
假设我们要给个人排队,,表示了排在之前一个给带来的舒适度,而就表示了排在第一位的舒适度。
通过一番模拟,Chino当然计算出了最优的方案,不过Cocoa希望Chino能计算地快一点。
题目对于Chino来说太难啦,你能帮一帮Chino吗?
输入描述:
第一行是一个正整数n;接下来是一个n×nn×n的矩阵Wi,j
输出描述:
输出所有人舒适度之和的最大值
示例1
输出
复制13
思路:我们可以用二进制的0/1序列 来表示队列的状态(n很小) 但是我们只知道序列不行 我们还需要知道该序列的最后一个数是什么 所以我们 用 dp[状态][该状态下最后一个为j]的最优忍耐度
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<string> #include<vector> #include<stack> #include<bitset> #include<cstdlib> #include<cmath> #include<set> #include<list> #include<deque> #include<map> #include<queue> #define ll long long int using namespace std; inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;} int moth[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; int dir[4][2]={1,0 ,0,1 ,-1,0 ,0,-1}; int dirs[8][2]={1,0 ,0,1 ,-1,0 ,0,-1, -1,-1 ,-1,1 ,1,-1 ,1,1}; const int inf=0x3f3f3f3f; const ll mod=1e9+7; int G[20][20]; int dp[1<<19][20]; int main(){ ios::sync_with_stdio(false); int n; cin>>n; for(int i=1;i<=n;i++) for(int j=1;j<=n;j++){ cin>>G[i][j]; } for(int i=1;i<(1<<n);i++){ //枚举状态 for(int j=0;j<n;j++) if(i&(1<<j)){ //如果当前点为1 bool f=0; for(int k=0;k<n;k++){ //找到当前状态其他任意一个1点作为j的前面一个人 if(k==j) continue; if(i&(1<<k)){ dp[i][j+1]=max(dp[i][j+1],dp[i^(1<<j)][k+1]+G[j+1][k+1]); //所以当前的状态就由前p个取反状态的最优状态转移得到 f=1; } } if(!f) dp[i][j+1]=G[j+1][j+1]; //不然就是只有j为1 那就让他自己站第一个 } } int ans=0; for(int i=1;i<=n;i++) ans=max(ans,dp[(1<<n)-1][i]); cout<<ans<<endl; }