1691: [Usaco2007 Dec]挑剔的美食家
Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 786 Solved: 391
[Submit][Status][Discuss]
Description
与很多奶牛一样,Farmer John那群养尊处优的奶牛们对食物越来越挑剔,随便拿堆草就能打发她们午饭的日子自然是一去不返了。现在,Farmer John不得不去牧草专供商那里购买大量美味多汁的牧草,来满足他那N(1 <= N <= 100,000)头挑剔的奶牛。 所有奶牛都对FJ提出了她对牧草的要求:第i头奶牛要求她的食物每份的价钱不低于A_i(1 <= A_i <= 1,000,000,000),并且鲜嫩程度不能低于B_i(1 <= B_i <= 1,000,000,000)。商店里供应M(1 <= M <= 100,000)种不同的牧草,第i 种牧草的定价为C_i(1 <= C_i <= 1,000,000,000),鲜嫩程度为D_i (1 <= D_i <= 1,000,000,000)。 为了显示她们的与众不同,每头奶牛都要求她的食物是独一无二的,也就是说,没有哪两头奶牛会选择同一种食物。 Farmer John想知道,为了让所有奶牛满意,他最少得在购买食物上花多少钱。
Input
* 第1行: 2个用空格隔开的整数:N 和 M
* 第2..N+1行: 第i+1行包含2个用空格隔开的整数:A_i、B_i * 第N+2..N+M+1行: 第j+N+1行包含2个用空格隔开的整数:C_i、D_i
Output
* 第1行: 输出1个整数,表示使所有奶牛满意的最小花费。如果无论如何都无法 满足所有奶牛的需求,输出-1
Sample Input
1 1
2 3
1 4
4 2
3 2
2 1
4 3
5 2
5 4
2 6
4 4
Sample Output
输出说明:
给奶牛1吃价钱为2的2号牧草,奶牛2吃价钱为4的3号牧草,奶牛3分到价钱
为2的6号牧草,奶牛4选择价钱为4的7号牧草,这种分配方案的总花费是12,为
所有方案中花费最少的。
HINT
Source
煞笔错误,毁我青春
变量初始化!!!!!!!!!!!!!!
考虑贪心,题目要求每只牛都要牧草,并且最小化花费,那么枚举每只牛选择满足鲜嫩度的草中花费超过要求且最小的
发现可以用平衡树维护,按鲜嫩度要求从大到小枚举牛,把满足鲜嫩度要求的扔treap里,找后继就行了
还发现了一种想法http://blog.csdn.net/clove_unique/article/details/51265208
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; #define lc t[x].l #define rc t[x].r const int N=1e5+5; inline int read(){ char c=getchar();int x=0,f=1; while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();} while(c>='0'&&c<='9'){x=x*10+c-'0'; c=getchar();} return x*f; } int n,m; struct data{ int a,b; bool operator <(const data &r)const{ return b>r.b; } }a[N],b[N]; struct node{ int l,r,v,w,size,rnd; }t[N]; int cnt,root; inline void update(int x){t[x].size=t[lc].size+t[rc].size+t[x].w;} inline void rturn(int &x){ int c=lc;lc=t[c].r;t[c].r=x; t[c].size=t[x].size;update(x);x=c; } inline void lturn(int &x){ int c=rc;rc=t[c].l;t[c].l=x; t[c].size=t[x].size;update(x);x=c; } void ins(int &x,int v){ if(x==0){ cnt++;x=cnt; t[cnt].l=t[cnt].r=0;t[cnt].size=t[cnt].w=1; t[cnt].v=v;t[cnt].rnd=rand(); return; } t[x].size++; if(t[x].v==v) {t[x].w++;return;} if(v<t[x].v){ ins(lc,v); if(t[lc].rnd<t[x].rnd) rturn(x); }else{ ins(rc,v); if(t[rc].rnd<t[x].rnd) lturn(x); } } void del(int &x,int v){ if(x==0) return; if(t[x].v==v){ if(t[x].w>1){t[x].w--,t[x].size--;return;} if(lc*rc==0) x=lc+rc; else if(t[lc].rnd<t[rc].rnd) rturn(x),del(x,v); else lturn(x),del(x,v); }else{ t[x].size--; if(v<t[x].v) del(lc,v); else del(rc,v); } } int ans; void suf(int x,int v){ if(x==0) return; if(v<=t[x].v) ans=x,suf(lc,v); else suf(rc,v); } void sol(){ ll sum=0; sort(a+1,a+1+n); sort(b+1,b+1+m); int i,j=1;//a i, b j for(int i=1;i<=n;i++){ while(j<=m&&b[j].b>=a[i].b) ins(root,b[j].a),j++; ans=-1; suf(root,a[i].a); if(ans==-1){puts("-1");return;} sum+=t[ans].v; del(root,t[ans].v); } printf("%lld",sum); } int main(){ //freopen("in.txt","r",stdin); srand(333); n=read();m=read(); for(int i=1;i<=n;i++) a[i].a=read(),a[i].b=read(); for(int i=1;i<=m;i++) b[i].a=read(),b[i].b=read(); sol(); }