[BZOJ5302][HAOI2018]奇怪的背包(DP)

由裴蜀定理得,一个集合S能得到w当且仅当gcd(S+{P})|w。

于是f[i][j]表示前i个物品gcd为j的方案数,发现gcd一定是P的因数,故总复杂度$O(n\sqrt{P}\log P)$(需要二分或者map)。

又发现,将所有数a[i]全都变成gcd(a[i],P)对答案是没有影响的,于是物品数也变成了P的因子个数级别。

故总复杂度为P的因子个数的平方*log P。

 1 #include<cstdio>
 2 #include<algorithm>
 3 #define rep(i,l,r) for (int i=(l); i<=(r); i++)
 4 typedef long long ll;
 5 using namespace std;
 6 
 7 const int M=2010,mod=1e9+7;
 8 int n,m,P,tot,x,d[M],cnt[M],f[M][M],ans[M];
 9 
10 void inc(int &x,int y){ x+=y; if (x>=mod) x-=mod; }
11 int gcd(int a,int b){ return b ? gcd(b,a%b) : a; }
12 
13 int main(){
14     freopen("bzoj5302.in","r",stdin);
15     freopen("bzoj5302.out","w",stdout);
16     scanf("%d%d%d",&n,&m,&P);
17     for (int i=1; i*i<=P; i++) if (P%i==0){
18         d[++tot]=i; cnt[tot]=1;
19         if (i*i!=P) d[++tot]=P/i,cnt[tot]=1;
20     }
21     sort(d+1,d+tot+1); f[0][0]=1;
22     rep(i,1,n){
23         scanf("%d",&x);
24         int t=lower_bound(d+1,d+tot+1,gcd(P,x))-d;
25         cnt[t]=(cnt[t]<<1)%mod;
26     }
27     rep(i,1,tot) rep(j,0,tot){
28         inc(f[i][j],f[i-1][j]);
29         int t=lower_bound(d+1,d+tot+1,gcd(d[i],d[j]))-d;
30         inc(f[i][t],1ll*f[i-1][j]*(cnt[i]-1)%mod);
31     }
32     rep(i,1,tot) rep(j,1,i) if (d[i]%d[j]==0) inc(ans[i],f[tot][j]);
33     rep(i,1,m) scanf("%d",&x),printf("%d\n",ans[lower_bound(d+1,d+tot+1,gcd(P,x))-d]);
34     return 0;
35 }

 

转载于:https://www.cnblogs.com/HocRiser/p/10280382.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值