3473: 字符串
Description
给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串?Input
第一行两个整数n,k。接下来n行每行一个字符串。Output
一行n个整数,第i个整数表示第i个字符串的答案。Sample Input
3 1
abc
a
ab
Sample Output
6 1 3HINT
对于 100% 的数据,1<=n,k<=10^5,所有字符串总长不超过10^5,字符串只包含小写字母。
【分析】
这道题用后缀数组的被SAM完爆了..貌似...
首先将所有字符串串在一次做SA,然后我们对于sa上,枚举每个串的每个后缀,求出有几个该后缀的前缀符合条件,那么就要判定区间里面有多少个不同的数,所幸的是这里只需要求是否该数目>=k,所以对于每个位置记录个L(x),表示[L(x),x]中刚好有k个不同的数,且L(x)与x距离最大(参考了CF官方题解)。(这里弄几条链O(n)可以搞出来)
然后CF上的题解是对于每个后缀二分出长度l,在排好序的后缀上查找最前最后端点使min(这一段的height)>=l。 (这里用到二分+RMQ)
接下来是去掉一个log的优化:(即1上面的二分长度l改成直接从上一个的位置开始for)
那么我们发现枚举后缀的时候,如果后缀c+S有n个前缀合法(c表示一个字符,s表示一个串),那么对于后缀S,至少有n-1个前缀合法(如果c+S有n个前缀出现不小于k次,那么其子串也是),那么我们就用类似求SA里的height一样的方法,记录一下前面的后缀的合法前缀数,然后这样的总复杂度就成了均摊。
类似求height的那个优化好厉害!!!
记得用long long~~
代码如下:
1 #include<cstdio> 2 #include<cstdlib> 3 #include<cstring> 4 #include<iostream> 5 #include<algorithm> 6 #include<queue> 7 using namespace std; 8 #define Maxn 200010 9 #define LL long long 10 11 int n,k; 12 char s[Maxn]; 13 int a[Maxn],bl[Maxn],cl; 14 15 int mymin(int x,int y) {return x<y?x:y;} 16 17 void init() 18 { 19 scanf("%d%d",&n,&k); 20 cl=0; 21 for(int i=1;i<=n;i++) 22 { 23 scanf("%s",s+1); 24 int len=strlen(s+1); 25 for(int j=1;j<=len;j++) a[++cl]=s[j]-'a'+1,bl[cl]=i; 26 a[++cl]=28,bl[cl]=-1; 27 } 28 } 29 30 int sa[Maxn],y[Maxn],rk[Maxn],Rs[Maxn],wr[Maxn]; 31 void get_sa(int m) 32 { 33 memcpy(rk,a,sizeof(rk)); 34 for(int i=0;i<=m;i++) Rs[i]=0; 35 for(int i=1;i<=cl;i++) Rs[rk[i]]++; 36 for(int i=1;i<=m;i++) Rs[i]+=Rs[i-1]; 37 for(int i=cl;i>=1;i--) sa[Rs[rk[i]]--]=i; 38 39 int ln=1,p=1; 40 while(p<cl) 41 { 42 int k=0; 43 for(int i=cl-ln+1;i<=cl;i++) y[++k]=i; 44 for(int i=1;i<=cl;i++) if(sa[i]>ln) y[++k]=sa[i]-ln; 45 for(int i=1;i<=cl;i++) wr[i]=rk[y[i]]; 46 47 for(int i=0;i<=m;i++) Rs[i]=0; 48 for(int i=1;i<=cl;i++) Rs[wr[i]]++; 49 for(int i=1;i<=m;i++) Rs[i]+=Rs[i-1]; 50 for(int i=cl;i>=1;i--) sa[Rs[wr[i]]--]=y[i]; 51 52 // memcpy(wr,rk,sizeof(wr)); 53 for(int i=1;i<=cl;i++) wr[i]=rk[i]; 54 for(int i=cl+1;i<=cl+ln;i++) wr[i]=0; 55 p=1; 56 rk[sa[1]]=1; 57 for(int i=2;i<=cl;i++) 58 { 59 if(wr[sa[i]]!=wr[sa[i-1]]||wr[sa[i]+ln]!=wr[sa[i-1]+ln]) p++; 60 rk[sa[i]]=p; 61 } 62 63 ln*=2;m=p; 64 } 65 } 66 67 int height[Maxn]; 68 void get_he() 69 { 70 int kk=0; 71 for(int i=1;i<=cl;i++) if(rk[i]!=1) 72 { 73 int j=sa[rk[i]-1]; 74 if(kk) kk--; 75 while(a[i+kk]==a[j+kk]&&i+kk<=cl&&j+kk<=cl) kk++; 76 height[rk[i]]=kk; 77 } 78 } 79 80 int g[Maxn],lt[Maxn],nt[Maxn],sm[Maxn]; 81 bool p[Maxn]; 82 void get_g() 83 { 84 memset(lt,0,sizeof(lt)); 85 for(int i=1;i<=cl;i++) 86 { 87 sm[i]=lt[bl[sa[i]]]; 88 lt[bl[sa[i]]]=i; 89 } 90 memset(lt,0,sizeof(lt)); 91 memset(p,0,sizeof(p)); 92 int h=0,now; 93 for(int i=1;i<=cl;i++) 94 { 95 if(!p[bl[sa[i]]]) h++; 96 p[bl[sa[i]]]=1; 97 if(h==k) {now=i;break;} 98 }int id=0; 99 for(int i=now;i>=1;i--) 100 { 101 if(p[bl[sa[i]]]) 102 { 103 h--; 104 if(id) 105 { 106 nt[i]=id;lt[id]=i;lt[i]=0; 107 } 108 id=i; 109 p[bl[sa[i]]]=0; 110 } 111 if(h==0) {g[now]=i;break;} 112 } 113 for(int i=now+1;i<=cl;i++) 114 { 115 if(sm[i]>g[i-1]) 116 { 117 g[i]=g[i-1]; 118 nt[now]=i;lt[i]=now; 119 nt[lt[sm[i]]]=nt[sm[i]]; 120 lt[nt[sm[i]]]=lt[sm[i]]; 121 } 122 else 123 { 124 nt[now]=i;lt[i]=now; 125 g[i]=nt[g[i-1]]; 126 } 127 now=i; 128 } 129 } 130 131 int d[Maxn][20]; 132 void init_rmq() 133 { 134 for(int i=2;i<=cl;i++) d[i][0]=height[i]; 135 for(int j=1;(1<<j)<=cl;j++) 136 for(int i=2;i+(1<<j)-1<=cl;i++) 137 d[i][j]=mymin(d[i][j-1],d[i+(1<<j-1)][j-1]); 138 } 139 140 int rmq(int l,int r) 141 { 142 int i=0; 143 while(l+(1<<i)-1<=r) i++; 144 return mymin(d[l][i-1],d[r-(1<<i-1)+1][i-1]); 145 } 146 147 int t_div(int l,int r,int x,int kk) 148 { 149 if(l>r) return x; 150 while(l<r) 151 { 152 int mid; 153 if(r<x) 154 { 155 mid=(l+r)>>1; 156 if(rmq(mid+1,x)>=kk) r=mid; 157 else l=mid+1; 158 } 159 else 160 { 161 mid=(l+r+1)>>1; 162 if(rmq(x+1,mid)>=kk) l=mid; 163 else r=mid-1; 164 } 165 } 166 if(l<x&&rmq(l+1,x)>=kk) return l; 167 if(l>x&&rmq(x+1,l)>=kk) return l; 168 return x; 169 } 170 171 LL ans[Maxn]; 172 void ffind() 173 { 174 memset(ans,0,sizeof(ans)); 175 int mx=0; 176 for(int i=1;i<=cl;i++) if(bl[i]!=-1) 177 { 178 int kk=1; 179 if(mx>=i) kk=mx-i+2; 180 while(1) 181 { 182 int l=t_div(1,rk[i]-1,rk[i],kk),r=t_div(rk[i]+1,cl,rk[i],kk); 183 if(g[r]<l||bl[i+kk-1]!=bl[i]||i+kk-1>cl) {kk--;break;} 184 kk++; 185 } 186 ans[bl[i]]+=kk; 187 mx=i+kk-1; 188 } 189 } 190 191 int main() 192 { 193 init(); 194 get_sa(30); 195 get_he(); 196 get_g(); 197 init_rmq(); 198 ffind(); 199 for(int i=1;i<=n;i++) 200 { 201 if(i!=1) printf(" "); 202 printf("%lld",ans[i]); 203 } 204 return 0; 205 }
2016-08-25 12:00:01
233学了广义SAM的我回来更新这题了~~
其实我还不是很懂。。
看GDXB的题解:
每个节点维护一个set,存它是哪个串的,然后整理一下parent tree从下往上合并set(他们说是启发式合并,然而我用了最普通的暴力合并)。
最后每一个串在自动机上跑一遍,如果set的size<k就不断跳pre,保证当前的这一条后缀的前缀都是可行的,每个可行点的贡献是step[i]。
广义SAM不能用step或者son求拓扑序,这个的pre更新用dfs即可。 (蒟蒻表示又被坑了!)
统计答案的时候可以用step,大概是机上有原串吧~
代码如下:
1 #include<cstdio> 2 #include<cstdlib> 3 #include<cstring> 4 #include<iostream> 5 #include<algorithm> 6 #include<queue> 7 #include<cmath> 8 #include<set> 9 using namespace std; 10 #define Maxn 100010 11 #define LL long long 12 13 char s[Maxn],ss[Maxn]; 14 int l,bg[Maxn]; 15 16 struct node 17 { 18 int pre,son[30],step; 19 }t[2*Maxn];int tot=0; 20 int last; 21 22 set<int > d[2*Maxn]; 23 24 void upd(int x) 25 { 26 memset(t[x].son,0,sizeof(t[x].son)); 27 d[x].clear(); 28 t[x].pre=0; 29 } 30 31 void get_d(int x,int y) 32 { 33 if(x==0) return; 34 set<int>:: iterator st,ed; 35 st=d[y].begin(); 36 ed=d[y].end(); 37 while(st!=ed) 38 { 39 d[x].insert(*st); 40 st++; 41 } 42 } 43 44 void extend(int x,int k) 45 { 46 int np=++tot; 47 upd(np);d[np].insert(x); 48 t[np].step=t[last].step+1; 49 int now=last; 50 while(now&&!t[now].son[k]) 51 { 52 t[now].son[k]=np; 53 now=t[now].pre; 54 } 55 if(!now) t[np].pre=1; 56 else 57 { 58 int p=now,q=t[now].son[k]; 59 if(t[p].step+1==t[q].step) t[np].pre=q; 60 else 61 { 62 int nq=++tot; 63 upd(nq); 64 memcpy(t[nq].son,t[q].son,sizeof(t[nq].son)); 65 get_d(nq,q); 66 t[nq].pre=t[q].pre; 67 t[q].pre=t[np].pre=nq; 68 t[nq].step=t[p].step+1; 69 while(now&&t[now].son[k]==q) 70 { 71 t[now].son[k]=nq; 72 now=t[now].pre; 73 } 74 } 75 } 76 last=np; 77 } 78 79 int n,kk; 80 void init() 81 { 82 scanf("%d%d",&n,&kk); 83 t[++tot].step=0; 84 upd(tot); 85 int sl=0; 86 for(int i=1;i<=n;i++) 87 { 88 scanf("%s",ss+1); 89 l=strlen(ss+1); 90 last=1; 91 bg[i]=sl+1; 92 for(int j=1;j<=l;j++) 93 { 94 int k=ss[j]-'a'+1; 95 extend(i,k); 96 s[++sl]=ss[j]; 97 } 98 } 99 bg[n+1]=sl+1; 100 } 101 102 struct hp 103 { 104 int x,y,next; 105 }a[2*Maxn];int al=0; 106 int first[2*Maxn]; 107 108 void ins(int x,int y) 109 { 110 a[++al].x=x;a[al].y=y; 111 a[al].next=first[x];first[x]=al; 112 } 113 114 void dfs(int x) 115 { 116 for(int i=first[x];i;i=a[i].next) 117 { 118 dfs(a[i].y); 119 get_d(x,a[i].y); 120 } 121 } 122 123 int main() 124 { 125 init(); 126 memset(first,0,sizeof(first)); 127 for(int i=1;i<=tot;i++) ins(t[i].pre,i); 128 dfs(1); 129 bool ok=1; 130 for(int i=1;i<=n;i++) 131 { 132 int now=1; 133 LL ans=0; 134 for(int j=bg[i];j<bg[i+1];j++) 135 { 136 int k=s[j]-'a'+1; 137 now=t[now].son[k]; 138 while(now&&d[now].size()<kk) now=t[now].pre; 139 if(!now) now=1; 140 ans+=t[now].step; 141 } 142 if(!ok) printf(" "); 143 else ok=0; 144 printf("%lld",ans); 145 } 146 return 0; 147 }
2016-09-20 21:28:28