[BZOJ1601] [Usaco2008 Oct] 灌水 (kruskal)

本文介绍了一种解决农田灌溉问题的算法,通过构建一个包含水源点的图,并使用Kruskal算法来寻找连接所有农田的最小生成树,从而确定最低灌溉成本。

Description

  Farmer John已经决定把水灌到他的n(1<=n<=300)块农田,农田被数字1到n标记。把一块土地进行灌水有两种方法,从其他农田饮水,或者这块土地建造水库。 建造一个水库需要花费wi(1<=wi<=100000),连接两块土地需要花费Pij(1<=pij<=100000,pij=pji,pii=0). 计算Farmer John所需的最少代价。

Input

  *第一行:一个数n

  *第二行到第n+1行:第i+1行含有一个数wi

  *第n+2行到第2n+1行:第n+1+i行有n个被空格分开的数,第j个数代表pij。

Output

  *第一行:一个单独的数代表最小代价.

Sample Input

4
5
4
4
3
0 2 2 2
2 0 3 3
2 3 0 4
2 3 4 0

Sample Output

9

  输出详解:
  Farmer John在第四块土地上建立水库,然后把其他的都连向那一个,这样就要花费3+2+2+2=9

HINT

Source

  资格赛

Solution

  将水源看成点$n+1$,那么在点$x$一个水库相当于$n+1$与$x$连边。于是欢快地跑Kruskal就好啦

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 struct edge
 4 {
 5     int u, v, w;
 6     bool operator < (const edge &rhs) const
 7     {
 8         return w < rhs.w;
 9     }
10 }e[90005];
11 int n, fa[305];
12  
13 int getfa(int x)
14 {
15     return fa[x] = x == fa[x] ? x : getfa(fa[x]);
16 }
17  
18 int Kruskal()
19 {
20     int u, v, cnt = 0, ans = 0;
21     for(int i = 1; i <= n * n; i++)
22     {
23         u = getfa(e[i].u), v = getfa(e[i].v);
24         if(u != v)
25         {
26             fa[v] = u, ans += e[i].w;
27             if(++cnt == n) return ans;
28         }
29     }
30 }
31  
32 int main()
33 {
34     int w, etot = 0;
35     cin >> n;
36     for(int i = 1; i <= n; i++)
37     {
38         cin >> w;
39         e[++etot] = (edge){n + 1, i, w};
40         fa[i] = i;
41     }
42     fa[n + 1] = n + 1;
43     for(int i = 1; i <= n; i++)
44         for(int j = 1; j <= n; j++)
45         {
46             cin >> w;
47             if(i != j) e[++etot] = (edge){i, j, w};
48         }
49     sort(e + 1, e + n * n + 1);
50     cout << Kruskal() << endl;
51     return 0;
52 }
View Code

 

转载于:https://www.cnblogs.com/CtrlCV/p/5491664.html

【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)内容概要:本文介绍了一种基于神经网络的数据驱动迭代学习控制(ILC)算法,用于解决具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车路径跟踪问题,并提供了完整的Matlab代码实现。该方法无需精确系统模型,通过数据驱动方式结合神经网络逼近系统动态,利用迭代学习机制不断提升控制性能,从而实现高精度的路径跟踪控制。文档还列举了大量相关科研方向和技术应用案例,涵盖智能优化算法、机器学习、路径规划、电力系统等多个领域,展示了该技术在科研仿真中的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及从事无人车控制、智能算法开发的工程技术人员。; 使用场景及目标:①应用于无人车在重复任务下的高精度路径跟踪控制;②为缺乏精确数学模型的非线性系统提供有效的控制策略设计思路;③作为科研复现与算法验证的学习资源,推动数据驱动控制方法的研究与应用。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注神经网络与ILC的结合机制,并尝试在不同仿真环境中进行参数调优与性能对比,以掌握数据驱动控制的核心思想与工程应用技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值