排序问题
算法问题的基础问题之一,便是排序问题:
输入:n个数的一个序列,<a1, a2,..., an>。
输出:一个排列<a1',a2', ... , an'>,满足a1' ≤ a2' ≤... ≤ an' 。(输出亦可为降序,左边给出的例子为升序)
一.算法描述
首先我们来看一种算法叫做插入排序。类比我们玩扑克牌时手上会首先拿到十几张无序的牌组,我们从左往右依次整理顺序使牌的大小从左至右保持不减。那么我们会把第二张牌插入其左边使左边两张牌成有序,再把第三张牌插入其左边使左边三张牌成有序,依次类推,直到把最后一张牌插入其左边之后手中的所有牌成有序状态。
下面我们给出一个对序列[5, 2, 4, 6, 1, 3]使用插入排序得到递增序列的过程,在图中蓝色的部分是排序好的序列,红色部分标记即将插入到前面的元素,白色部分为未排序的部分。每进行一次插入操作后,sorted序列元素个数加1,unsorted序列元素个数减1,直到unsorted序列中无元素时终止。
二.代码实现
下面是插入排序的C++实现:
#include<iostream> #include<vector> using namespace std; /** * @brief 对向量v进行插入排序 * @param v 待排序的向量 */ void InsertionSort(vector<int> &v) { int i, j, key; //从第二个元素开始遍历数组 for(i = 1; i < v.size(); i++){ //取要插入的元素key key = v[i]; //倒过来遍历key左边的sorted list, 如果不插入则右移一位直到j停留的位置值小于key或来到头部 j = i - 1; while(j >= 0 && v[j] > key){ v[j+1] = v[j]; j--; } //插入key v[j+1] = key; } } int main() { //arr为要排序的数组 int arr[] = {5,2,4,7,10,9,8,1,6,3}; //把数组放入向量中 vector<int> v(arr, arr + sizeof(arr)/sizeof(int)); //对向量使用插入排序 InsertionSort(v); //按顺序打印排序后向量中的所有元素 copy (v.begin(), v.end(), ostream_iterator<int> (cout, " ")); cout << endl; }
三.算法分析
(1)时间复杂度
Best-case:数组已排好序。每次考虑要插入的key时都比前一个大,则都不用移动。时间复杂度为o(n)。
Worst-case:数组已反向排好序。每次考虑要插入的key时都比第一个元素小,key前面的所有元素要往后挪动一个位置,然后key要头插。时间复杂度为o(n2)。
Average-case:每次考虑要插入的key时,期望会在前面序列的中间找到插入的位置。时间复杂度为o(n2)。
(2)稳定性
稳定性是指对于原有序列中的等值元素,是否在排序后不改变它们的相对顺序关系。分析易知插入排序是稳定的。
(3)适合范围
当需要排序的数组大多数都已排好序时(Almost Already Sorted),这种情况能更接近Best-case,使用插入排序所需的计算步骤更少。