Tauber 定理及其证明

这里写的只是最常见最普通的 Tauber 定理,写这个纯粹是因为常庚哲,史济怀书上的那个证明(定理 10.17)太不符合审美了。

(Tauber)若 $\lim_{r \to 1^{-}} \sum c_n r^n = \sigma$ 且 $c_n = o(\frac{1}{n}) \,, $ 则 $\sum c_n = \sigma \,.$

 

分析:想法就是令 $r = 1 - \frac{1}{N} \,.$ 作估计 \[ \left| \sum_{n=1}^N c_n - \sum_{n=1}^N c_n r^n \right| \leq \sum_{n=1}^N |c_n| (1- (1-\frac{1}{N})^n) \leq \sum_{n=1}^N |c_n| \frac{n}{N} \,, \] 以及 \[ \left|\sum_{n=1}^{\infty} c_n r^n - \sum_{n=1}^N c_n r^n \right| \leq \sum_{n>N} |c_n| (1-\frac{1}{N})^n \leq \sum_{n>N} \frac{n c_n}{N} (1-\frac{1}{N})^n \leq \sum_{n>N} \frac{\epsilon}{N} (1-\frac{1}{N})^n = \epsilon (1-\frac{1}{N})^{N+1}  \,. \] 由 $n c_n \to 0$ 不难得知其前 $N$ 项和的算术平均也趋于零,而 $(1-\frac{1}{N})^{N+1} \to e^{-1} \,.$ 综合这两个估计,命题得证。

 

转载于:https://www.cnblogs.com/yjq24/p/6395158.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值