功能强大,代码优雅:Java8真实案例Stream大数据集高效之旅(收藏版)_List

Java8新特性

Java8 新增了非常多的特性,我们主要讨论以下几个:

  • Lambda 表达式 − Lambda 允许把函数作为一个方法的参数(函数作为参数传递到方法中)。
  • Stream API −新添加的Stream API(java.util.stream) 把真正的函数式编程风格引入到Java中。

肖哥弹架构 跟大家“弹弹” 函数式,需要代码关注

欢迎 点赞,点赞,点赞。

关注公号Solomon肖哥弹架构获取更多精彩内容

历史热点文章

Java 8 Stream API 函数式接口全解析:业务案例与代码实现

在Java 8中,Stream API 引入了一种新的处理集合数据的方式,使得我们可以以声明式的方式处理数据集合。以下是Stream API中一些关键函数式接口的详细业务案例。

1. Stream 的 filter

业务数据:一系列用户的年龄。

List<Integer> ages = Arrays.asList(22, 34, 29, 17, 30);
  • 1.

函数使用

Predicate<Integer> isAdult = age -> age >= 18;
long adultCount = ages.stream()
                       .filter(isAdult)
                       .count();
  • 1.
  • 2.
  • 3.
  • 4.

输出结果

描述:计算成年人的数量
结果值:成年人数为 4
  • 1.
  • 2.

2. Stream 的 map

业务数据:一系列用户的姓名。

List<String> names = Arrays.asList("Alice", "Bob", "Charlie");
  • 1.

函数使用

Function<String, String> toUpperCase = String::toUpperCase;
List<String> upperCaseNames = names.stream()
                                     .map(toUpperCase)
                                     .collect(Collectors.toList());
  • 1.
  • 2.
  • 3.
  • 4.

输出结果

描述:将所有姓名转换为大写
结果值:["ALICE", "BOB", "CHARLIE"]
  • 1.
  • 2.

3. Stream 的 flatMap

业务数据:一系列用户的姓名和地址。

List<User> users = Arrays.asList(
    new User("Alice", Arrays.asList("123 Apple St.", "456 Banana Ave.")),
    new User("Bob", Arrays.asList("789 Cherry Blvd."))
);
  • 1.
  • 2.
  • 3.
  • 4.

函数使用

Function<User, Stream<String>> expandAddresses = user -> user.getAddresses().stream();
List<String> allAddresses = users.stream()
                                   .flatMap(expandAddresses)
                                   .collect(Collectors.toList());
  • 1.
  • 2.
  • 3.
  • 4.

输出结果

描述:获取所有用户的地址
结果值:["123 Apple St.", "456 Banana Ave.", "789 Cherry Blvd."]
  • 1.
  • 2.

4. Stream 的 distinct

业务数据:一系列重复的字符串。

List<String> strings = Arrays.asList("apple", "banana", "apple", "orange", "banana");
  • 1.

函数使用

Set<String> distinctStrings = strings.stream()
                                      .distinct()
                                      .collect(Collectors.toSet());
  • 1.
  • 2.
  • 3.

输出结果

描述:获取不重复的字符串集合
结果值:["apple", "banana", "orange"]
  • 1.
  • 2.

5. Stream 的 sorted

业务数据:一系列字符串。

List<String> strings = Arrays.asList("banana", "apple", "cherry");
  • 1.

函数使用

List<String> sortedStrings = strings.stream()
                                     .sorted()
                                     .collect(Collectors.toList());
  • 1.
  • 2.
  • 3.

输出结果

描述:按字典顺序排序字符串
结果值:["apple", "banana", "cherry"]
  • 1.
  • 2.

6. Stream 的 limit

业务数据:一系列数字。

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
  • 1.

函数使用

List<Integer> firstThreeNumbers = numbers.stream()
                                          .limit(3)
                                          .collect(Collectors.toList());
  • 1.
  • 2.
  • 3.

输出结果

描述:获取前三个数字
结果值:[1, 2, 3]
  • 1.
  • 2.

7. Stream 的 skip

业务数据:一系列字符串。

List<String> fruits = Arrays.asList("apple", "banana", "cherry", "date", "elderberry");
  • 1.

函数使用

List<String> fruitsAfterBanana = fruits.stream()
                                         .skip(2)
                                         .collect(Collectors.toList());
  • 1.
  • 2.
  • 3.

输出结果

描述:跳过前两个字符串,获取剩余的字符串
结果值:["cherry", "date", "elderberry"]
  • 1.
  • 2.

8. Stream 的 forEach

业务数据:一系列员工的姓名。

List<String> employeeNames = Arrays.asList("Alice", "Bob", "Charlie");
  • 1.

函数使用

Consumer<String> printName = name -> System.out.println("Employee: " + name);
employeeNames.forEach(printName);
  • 1.
  • 2.

输出结果

描述:打印每个员工的姓名
结果值:
Employee: Alice
Employee: Bob
Employee: Charlie
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.

9. Stream 的 reduce

业务数据:一系列数字。

List<Integer> numbers = Arrays.asList(1, 2, 3, 4);
  • 1.

函数使用

Optional<Integer> sum = numbers.stream()
                                .reduce(Integer::sum);
  • 1.
  • 2.

输出结果

描述:计算数字总和
结果值:总和为 10
  • 1.
  • 2.

10. Stream 的 collect

业务数据:一系列字符串。

List<String> strings = Arrays.asList("apple", "banana", "cherry");
  • 1.

函数使用

List<String> sortedStrings = strings.stream()
                                     .sorted()
                                     .collect(Collectors.toList());
  • 1.
  • 2.
  • 3.

输出结果

描述:按字典顺序排序字符串并收集到列表
结果值:["apple", "banana", "cherry"]
  • 1.
  • 2.

11. Stream 的 min 和 max

业务数据:一系列数字。

List<Integer> numbers = Arrays.asList(1, 3, 2, 5, 4);
  • 1.

函数使用

Optional<Integer> min = numbers.stream()
                                .min(Integer::compare);
Optional<Integer> max = numbers.stream()
                                .max(Integer::compare);
  • 1.
  • 2.
  • 3.
  • 4.

输出结果

描述:找出数字中的最小值和最大值
结果值:最小值为 1,最大值为 5
  • 1.
  • 2.

12. Stream 的 count

业务数据:一系列字符串。

List<String> strings = Arrays.asList("apple", "banana", "cherry");
  • 1.

函数使用

long count = strings.stream()
                     .count();
  • 1.
  • 2.

输出结果

描述:计算字符串的数量
结果值:数量为 3
  • 1.
  • 2.

13. Stream 的 anyMatch

业务数据:一系列字符串。

List<String> strings = Arrays.asList("apple", "banana", "cherry");
  • 1.

函数使用

boolean hasBanana = strings.stream()
                            .anyMatch("banana"::equals);
  • 1.
  • 2.

输出结果

描述:检查列表中是否包含"banana"
结果值:结果为 true
  • 1.
  • 2.

14. Stream 的 allMatch

业务数据:一系列字符串。

List<String> strings = Arrays.asList("apple", "banana", "cherry");
  • 1.

函数使用

boolean allFruits = strings.stream()
                            .allMatch(s -> s.startsWith("b"));
  • 1.
  • 2.

输出结果

描述:检查所有字符串是否以"b"开头
结果值:结果为 false
  • 1.
  • 2.

15. Stream 的 noneMatch

业务数据:一系列字符串。

List<String> strings = Arrays.asList("apple", "banana", "cherry");
  • 1.

函数使用

boolean noDates = strings.stream()
                          .noneMatch("date"::equals);
  • 1.
  • 2.

输出结果

描述:检查列表中是否没有"date"
结果值:结果为 true
  • 1.
  • 2.

16. Stream 的 findAny

业务数据:一系列数字。

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
  • 1.

函数使用

java
Optional<Integer> anyNumber = numbers.stream()
                                       .findAny();
  • 1.
  • 2.
  • 3.

输出结果

描述:找出任意一个数字
结果值:可能的结果为 1(或其他数字,取决于实现)
  • 1.
  • 2.

17. Stream 的 findFirst

业务数据:一系列字符串。

List<String> strings = Arrays.asList("apple", "banana", "cherry");
  • 1.

函数使用

Optional<String> firstString = strings.stream()
                                        .findFirst();
  • 1.
  • 2.

输出结果

描述:找出第一个字符串
结果值:可能的结果为 "apple"(或其他字符串,取决于实现)
  • 1.
  • 2.

18. Stream 的 peek

业务数据:一系列字符串。

List<String> strings = Arrays.asList("apple", "banana", "cherry");
  • 1.

函数使用

java
strings.stream()
       .peek(System.out::println) // 打印每个字符串
       .collect(Collectors.toList());
  • 1.
  • 2.
  • 3.
  • 4.

输出结果

描述:打印每个字符串并收集到列表
结果值:
apple
banana
cherry
["apple", "banana", "cherry"]
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

19. Stream 的 toArray

业务数据:一系列字符串。

List<String> strings = Arrays.asList("apple", "banana", "cherry");
  • 1.

函数使用

String[] stringArray = strings.stream()
                                .toArray(String[]::new);
  • 1.
  • 2.

输出结果

描述:将字符串流转换为数组
结果值:字符串数组 ["apple", "banana", "cherry"]
  • 1.
  • 2.

20. Stream 的 boxed

业务数据:一系列整数。

IntStream intStream = IntStream.of(1, 2, 3, 4, 5);
  • 1.

函数使用

Stream<Integer> integerStream = intStream.boxed();
  • 1.

输出结果

复制
描述:将基本类型流转换为对象流
结果值:Stream of Integers [1, 2, 3, 4, 5]
  • 1.
  • 2.
  • 3.

20. Stream 完整案例

业务背景

需要处理以下需求:

  • 计算总销售额。
  • 找出最昂贵的订单。
  • 筛选出金额超过1000的订单。
  • 获取所有不重复的客户名称。
  • 计算已交付订单的数量。
  • 计算订单的平均金额。
  • 使用并行流提高处理速度。
业务数据
List<Order> orders = new ArrayList<>();
for (int i = 0; i < 1000000; i++) {
    orders.add(new Order("Customer" + i % 100, i % 10000 + 1, Math.random() * 5000 + 500));
}
  • 1.
  • 2.
  • 3.
  • 4.

在这个模拟数据中,我们生成了100万个订单,每个订单有客户名称、订单ID和随机生成的金额(500到5500)。

函数使用
// 计算总销售额
double totalSales = orders.stream()
                         .mapToDouble(Order::getAmount)
                         .sum();

// 找出最昂贵的订单
Optional<Order> mostExpensiveOrder = orders.stream()
                                             .max(Order::compareByAmount);

// 筛选出金额超过1000的订单
List<Order> ordersOverThreshold = orders.stream()
                                          .filter(order -> order.getAmount() > 1000)
                                          .collect(Collectors.toList());

// 获取所有不重复的客户名称
Set<String> uniqueCustomerNames = orders.stream()
                                          .map(Order::getCustomerName)
                                          .collect(Collectors.toSet());

// 计算已交付订单的数量
long orderCount = orders.stream()
                         .filter(Order::isDelivered)
                         .count();

// 计算订单的平均金额
double averageOrderAmount = orders.stream()
                                    .mapToDouble(Order::getAmount)
                                    .average()
                                    .orElse(0.0);

// 使用并行流提高处理速度
double parallelTotalSales = orders.parallelStream()
                                     .mapToDouble(Order::getAmount)
                                     .sum();
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.

输出结果

  • 总销售额totalSales 表示所有订单的总金额。
  • 最昂贵的订单mostExpensiveOrder 包含金额最高的订单信息。
  • 金额超过1000的订单列表ordersOverThreshold 包含所有金额超过1000的订单。
  • 不重复的客户名称集合uniqueCustomerNames 包含所有不同的客户名称。
  • 已交付订单的数量orderCount 表示已交付的订单数。
  • 订单的平均金额averageOrderAmount 表示所有订单金额的平均值。
  • 并行流处理的总销售额parallelTotalSales 使用并行流计算的总销售额,可以提高处理速度。