二分优化的lis

/*此题为一个女大佬教我的,%%%%%%%%%%%%*/

题目描述

给出1-n的两个排列P1和P2,求它们的最长公共子序列。

输入输出格式

输入格式:

第一行是一个数n,

接下来两行,每行为n个数,为自然数1-n的一个排列。

 

输出格式:

一个数,即最长公共子序列的长度

 

朴素版的lis是O(N ^ 2)的做法,这里就不在给出;当数据大时很容易被卡,通过二分优化 + 贪心可以优化成为O(NlogN),首先介绍两个函数:

lower_bound( )和upper_bound( )是利用二分查找的方法在一个有序的数组中进行查找的。

 

当数组是从小到大时,

lower_bound( begin,end,num):表示从数组的begin位置到end-1位置二分查找第一个大于或等于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,找到数字在数组中的下标。

upper_bound( begin,end,num):表示从数组的begin位置到end-1位置二分查找第一个大于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,找到数字在数组中的下标。

 

当数组是从大到小时,我们需要重载lower_bound()和upper_bound();

struct cmp{bool operator()(int a,int b){return a>b;}};

lower_bound( begin,end,num,cmp() ):从数组的begin位置到end-1位置二分查找第一个小于或等于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。

upper_bound( begin,end,num,cmp() ):从数组的begin位置到end-1位置二分查找第一个小于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。

 

b[i] 表示长度为i的上升子序列的最后一个数的最小值,如果a[i] > b[i] 则显然子序列的长度加1;否则找到找到第一个比它大的值将其替换,最终可以找到lis的长度;

/*大佬们可以手写二分...*/

#include <bits/stdc++.h>

using namespace std;

#define ll long long 
#define INF 0x3f3f3f3f
#define MAXN 1000010
#define MAXM 5010

inline int read()
{
    int x = 0,ff = 1;char ch = getchar();
    while(!isdigit(ch))
    {
        if(ch == '-') ff = -1;
        ch = getchar();
    }
    while(isdigit(ch))
    {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    return x * ff;
}

int n,ans = 1,a[MAXN],b[MAXN];

int main()
{
    n = read();
    for(int i = 1;i <= n;++i)
        a[i] = read();
    b[1] = a[1];
    for(int i = 2;i <= n;++i)
    {
        if(b[ans] < a[i]) b[++ans] = a[i];
        else b[lower_bound(b + 1,b + ans + 1,a[i]) - b] = a[i];
    }
    printf("%d\n",ans);
    return 0;
}

 手写二分如下:

#include <bits/stdc++.h>

using namespace std;

#define MAXX 301000

int n;
int a[MAXX], f[MAXX];
int top = 0;

void find(int k) {
    int left = 1, right = top;
    while(left + 1 < right) {
        int mid = (left + right) / 2;
        if(f[mid] >= k) {
            right = mid;
        }
        else if(f[mid] < k) left = mid;
    }
//    cout << left << ' ' << right  << ' ' << top << endl;
    if(f[left] > k) f[left] = k;
    else if(f[right] > k && f[left] <= k) f[right] = k;
}

int main() {
    memset(f, 0, sizeof(f));
    scanf("%d", &n);
    for(int i = 1; i <= n; ++i) {
        scanf("%d", &a[i]);
        if(a[i] > f[top]) {
            f[++top] = a[i];
        }
        else if(a[i] < f[top]) {
            find(a[i]);
        }
    }
    printf("%d", top);
    return 0;
}

 

加强版:

描述 Description
有N个整数,输出这N个整数的最长上升序列、最长下降序列、最长不上升序列和最长不下降序列。
输入格式 Input Format
第一行,仅有一个数N。 N<=700000
第二行,有N个整数。 -10^9<=每个数<=10^9
输出格式 Output Format
第一行,输出最长上升序列长度。
第二行,输出最长下降序列长度。
第三行,输出最长不上升序列长度。
第四行,输出最长不下降序列长度。

这岂不是很显然:

#include <bits/stdc++.h>

using namespace std;

#define ll long long 
#define INF 0x3f3f3f3f
#define MAXN 1000010
#define MAXM 5010

inline int read()
{
    int x = 0,ff = 1;char ch = getchar();
    while(!isdigit(ch))
    {
        if(ch == '-') ff = -1;
        ch = getchar();
    }
    while(isdigit(ch))
    {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    return x * ff;
}

int n,ans1,ans2,ans3,ans4,a[MAXN];
int b1[MAXN],b2[MAXN],b3[MAXN],b4[MAXN];

struct cmp{bool operator()(int a,int b){return a>b;}};

int main()
{
    n = read();
    for(int i = 1;i <= n;++i)
        a[i] = read();
    ans1 = ans2 = ans3 = ans4 = 1;
    b1[1] = b2[1] = b3[1] = b4[1] = a[1];
    for(int i = 2;i <= n;++i)
    {
        if(a[i] > b1[ans1]) b1[++ans1] = a[i];
        else b1[lower_bound(b1 + 1,b1 + ans1 + 1,a[i]) - b1] = a[i];
        if(a[i] < b2[ans2]) b2[++ans2] = a[i];
        else b2[lower_bound(b2 + 1,b2 + ans2 + 1,a[i],cmp()) - b2] = a[i];
        if(a[i] <= b3[ans3]) b3[++ans3] = a[i];
        else b3[upper_bound(b3 + 1,b3 + ans3 + 1,a[i],cmp()) - b3] = a[i];
        if(a[i] >= b4[ans4]) b4[++ans4] = a[i];
        else b4[upper_bound(b4 + 1,b4 + ans4 + 1,a[i]) - b4] = a[i];
    }
    printf("%d\n%d\n%d\n%d\n",ans1,ans2,ans3,ans4);
    return 0;
}

 

转载于:https://www.cnblogs.com/AK-ls/p/10522631.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值