Atcoder681 Typical DP Contest E.数 数位dp

写什么递归....非递归多好写

令$f[i][j]$表示前$i$位的和在模$d$意义下为$j$的方案数,然后转移即可

复杂度$O(10000 * 100 * 10)$

注意非递归建议高位摆第$n$位...

#include <cstdio>
#include <cstring>
using namespace std;

#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)

const int sid = 10050;
const int pid = 105;
const int mod = 1e9 + 7;

char s[sid];
int d, n, f[sid][pid];

inline void inc(int &a, int b) { a += b; if(a >= mod) a -= mod; }
inline int inv(int a) { return (d - (a % d)) % d; }

void Solve() {
    f[0][0] = 1;
    rep(i, 1, n)
        rep(j, 0, 9) rep(k, 0, d - 1)
            inc(f[i][(k + j) % d], f[i - 1][k]);

    int ret = 0;
    rep(i, 1, n - 1) rep(j, 1, 9) 
        inc(ret, f[i - 1][inv(j)]); 
    rep(i, 1, s[n] - 1) 
        inc(ret, f[n - 1][inv(i)]);
        
    int sum = s[n] % d;
    drep(i, n - 1, 1) {
        rep(j, 0, s[i] - 1)
            inc(ret, f[i - 1][inv(sum + j)]);
        sum = (sum + s[i]) % d;
    }
    if(!sum) ret ++;
    printf("%d\n", ret);
}

int main() {
    scanf("%d", &d);
    scanf("%s", s + 1);
    n = strlen(s + 1); reverse(s + 1, s + n + 1);
    rep(i, 1, n) s[i] = s[i] - '0'; 
    Solve();
    return 0;
}

 

转载于:https://www.cnblogs.com/reverymoon/p/9932526.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值