解析:
2 的 n次方可以表示为: 2^0, 2^1, 2^2 ...2^n.
最直观的思想就是用1做移位操作,然后判断移动后的值是否与给定的数相等
时间复杂度: O(logn)
示例:
public class Test {
public static boolean isPower(int n){
if (n<1) return false;
int i =1;
while(i<=n) {
if(i==n) return true;
i<<=1;
}
return false;
}
public static void main(String[] args) {
System.out.println(isPower(4));
System.out.println(isPower(6));
}
}
方法二:
如果一个数是2的n次方,那么这个数对应的二进制表示中只有一位是1,其余都是0.
因此判断一个数是否是2的n次方,可以转换为判断这个数对应的二进制表示是否只有一位为1.
如果一个数的二进制表示只有一位是1, 如 num = 00010000, 那么 num-1 的二进制为 num-1 = 00001111
由于num与num-1二进制表示中每一位都不相同,因此num&(num-1)的运算结果为0
可以用来判断一个数是否为2的n次方。
代码示例:
public class Test{
public static boolean isPower(int n){
if(n<1) return false;
int m = n&(n-1);
return m == 0;
}
public static void main(String[] args) {
System.out.println(isPower(4));
System.out.println(isPower(6));
}
}