数据挖掘中分类与预测的区别

分类是指把数据样本映射到一个事先定义的类中的学习过程,即给定一组输入的属性向量及其对应的类,用基于归纳的学习算法得出分类。

第一步:建立训练集的分类器



第二步:首先评估分类器的预测准确率,再对新数据预测其类标号



b)预测可以涉及数据值预测和类标记预测,但预测通常指值预测。

c)两者的区别是,分类是用来预测数据对象的类标记,而预测则是估计某些空缺或未知值。
例如:银行业务中,根据贷款申请者信息判断贷款者是属于“安全”类还是“风险”类的,这是数据挖掘中的分类任务。
而分析给贷款人贷款量的多少对于银行是“安全”的就是数据挖掘中的预测任务。

具体区别如下













































转载于:https://www.cnblogs.com/ainima/p/6331806.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值