weka使用笔记1-FPGrowth注意事项和参数说明

本文详细介绍了在Linux环境下使用weka进行数据挖掘的步骤,特别关注了关联规则挖掘过程,包括配置环境变量、选择合适的算法(FPGrowth)、理解其参数及其在处理大量数据时的优势和限制。此外,文章还强调了weka数据文件的arff格式及构建稀疏格式文件的重要性,并提供了FPGrowth算法的关键参数解释和如何通过管道保存挖掘结果的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

weka是一个很好的数据挖掘实验的工具,可以进行标准的数据挖掘的各种实验,首先来说一下关联规则的挖掘。

在linux环境下,在使用weka之前,要配置好环境变量,将weka目录下的weka.jar的位置加到classpath中,然后就可以调用weka的命令行进行数据挖掘了。weka的apriori算法优化非常不好,相当占用内存,大约50w的属性开14G的内存都不够用,所以如果在本机进行数据量较大的实验的话,要选FPGrowth算法。FPGrowth算法只需要扫面两遍数据库,虽然他是递归的选择rules的,也比较占用内存,但是如果有4G以上的内存的话,基本上就够用了。至于FPGrowth的算法实现,就不做赘述了,网上一大堆,理解起来也不是很难。

weka默认的数据形式是.arff格式的,arff格式很简单,支持稀疏格式,一般的关联规则都要用稀疏格式的数据,提醒一点的是,构建稀疏格式的arff文件的时候,数据行上一定不要忘记加上{}。

FPGrowth的参数:-t,系统默认参数,是指定要进行挖掘的数据文件的;-N,是给出要输出多少条规则;-T是指定选择哪个量进行排序,weka提供四种排序方法,0=confidence ,1=lift , 2=leverage , 3=Conviction。4种参数代表的意义一查就有,0,1,3都是越大越好,2一般出来都是0。-C是指你选定的那个排序参数的那个最小值,-M是是支持度的最小值,-U是支持度的最大值。

进行挖掘的时候如果想把输出结果保存的话,可以利用linux的管道,命令后面加上| tee yourFilename就好了。

转载于:https://www.cnblogs.com/fbiswt/archive/2012/10/20/2732422.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值