4561: [JLoi2016]圆的异或并
Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 254 Solved: 118
[Submit][Status][Discuss]
Description
在平面直角坐标系中给定N个圆。已知这些圆两两没有交点,即两圆的关系只存在相离和包含。求这些圆的异或面积并。异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个圆内则不考虑。
Input
第一行包含一个正整数N,代表圆的个数。接下来N行,每行3个非负整数x,y,r,表示一个圆心在(x,y),半径为r的
圆。保证|x|,|y|,≤10^8,r>0,N<=200000
Output
仅一行一个整数,表示所有圆的异或面积并除以圆周率Pi的结果。
Sample Input
2
0 0 1
0 0 2
0 0 1
0 0 2
Sample Output
3
HINT
Source
Solution
思路还是很显然的,就是看实现的效率了
把一个圆的左右端点分开,来进行扫描,然后用set维护圆与圆的相对位置,
如果扫描完一个圆,就计算这个圆的贡献是+还是-
最后累加答案的时候,将贡献的系数乘进答案即可
Code
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<set> using namespace std; int read() { int x=0,f=1; char ch=getchar(); while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();} while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();} return x*f; } #define MAXN 200010 struct CircleNode{int x,y,r;}c[MAXN]; int T; struct PointNode { int id,x,f; PointNode (int id=0,int x=0,int f=0) : id(id),x(x),f(f) {} bool operator < (const PointNode & A) const { double xx=c[id].y+f*sqrt((long long)c[id].r*c[id].r-(long long)(T-c[id].x)*(T-c[id].x)); double yy=c[A.id].y+A.f*sqrt((long long)c[A.id].r*c[A.id].r-(long long)(T-c[A.id].x)*(T-c[A.id].x)); if (xx!=yy) return xx<yy; else return f<A.f; } }P[MAXN<<1]; int tp,N,xs[MAXN]; long long ans=0; set<PointNode> st; set<PointNode> :: iterator ist; bool cmp(PointNode A,PointNode B) {return A.x<B.x;} int main() { N=read(); for (int i=1; i<=N; i++) c[i].x=read(),c[i].y=read(),c[i].r=read(), P[++tp]=PointNode(i,c[i].x-c[i].r,1), P[++tp]=PointNode(i,c[i].x+c[i].r,-1); sort(P+1,P+tp+1,cmp); // for (int i=1; i<=tp; i++) printf("%d %d %d\n",P[i].id,P[i].x,P[i].f); for (int i=1; i<=tp; i++) { T=P[i].x; if (P[i].f==1) { ist=st.upper_bound(PointNode(P[i].id,0,-1)); if (ist==st.end()) xs[P[i].id]=1; else if ((*ist).f==1) xs[P[i].id]=-xs[(*ist).id]; else xs[P[i].id]=xs[(*ist).id]; st.insert(PointNode(P[i].id,0,1)); st.insert(PointNode(P[i].id,0,-1)); } else st.erase(PointNode(P[i].id,0,1)),st.erase(PointNode(P[i].id,0,-1)); } for (int i=1; i<=N; i++) ans+=(long long)xs[i]*c[i].r*c[i].r; printf("%lld\n",ans); return 0; }